1
|
Pedroso LC, Bedore GC, da Cruz JP, Sousa FAB, Scariot PPM, Dos Reis IGM, Silva ÁAR, M Porcari A, Messias LHD. Metabolomics analyses and physical interventions in soccer: a systematic review. Metabolomics 2024; 21:7. [PMID: 39676125 DOI: 10.1007/s11306-024-02202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Soccer is the most recognized sports worldwide. It is a fertile ground for the use of metabolomics analyses, considering the multifactorial nature of soccer's physical demands on the body. Although scientific studies have tried using it to better understand the impacts of soccer into different contexts of the sport, no systematic review is available on metabolomics analyses in soccer athletes subjected to physical exertion interventions. AIM OF REVIEW Retrieve scientific articles that conducted metabolomics analyses on soccer athletes subjected to physical exertion interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Initially, 271 studies were screened, and 48 were retrieved for abstract analysis. Of these, 26 met the eligibility criteria, but 5 failed to meet inclusion criteria. The 21 studies included in this systematic review demonstrate that responses from physical training or acute exercise sessions, followed by the effects of soccer matches, have been the primary focus of researchers to date, highlighting alterations on metabolites from the energy metabolism, immunological pathway, purines, tryptophan/phenylalanine metabolism, as well as oxidative species and antioxidant capacity. Other studies suggest, albeit preliminarily, that organic metabolites have the potential to distinguish soccer players' performance and physical fitness, as well as provide valuable insights into diet, physical condition, training load, and recovery throughout the season. Despite metabolomics great potential to understand physiological alterations provoked by soccer as shown by the included studies, future studies should consider female athletes, explore the cause-and-effect relationship between metabolites and soccer performance more deeply, and examine the effects of different training periodizations on these markers.
Collapse
Affiliation(s)
- Larissa Castro Pedroso
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil
| | - Gabriel Chabaribery Bedore
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil
| | - João Pedro da Cruz
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil
| | | | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil
| | - Ivan Gustavo Masselli Dos Reis
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil
| | - Álex Ap Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil
| | - Andreia M Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, São Francisco de Assis av, 218, Taboão, Bragança Paulista, SP, 12916900, Brazil.
| |
Collapse
|
2
|
Nakhod VI, Butkova TV, Malsagova KA, Petrovskiy DV, Izotov AA, Nikolsky KS, Kaysheva AL. Sample Preparation for Metabolomic Analysis in Exercise Physiology. Biomolecules 2024; 14:1561. [PMID: 39766268 PMCID: PMC11673972 DOI: 10.3390/biom14121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics investigates final and intermediate metabolic products in cells. Assessment of the human metabolome relies principally on the analysis of blood, urine, saliva, sweat, and feces. Tissue biopsy is employed less frequently. Understanding the metabolite composition of biosamples from athletes can significantly improve our knowledge of molecular processes associated with the efficiency of training and recovery. Such knowledge may also lead to new management opportunities. Successful execution of metabolomic studies requires simultaneous qualitative and quantitative analyses of numerous small biomolecules in samples under test. Unlike genomics and proteomics, which do not allow for direct assessment of enzymatic activity, metabolomics focuses on biochemical phenotypes, providing unique information about health and physiological features. Crucial factors in ensuring the efficacy of metabolomic analysis are the meticulous selection and pre-treatment of samples.
Collapse
Affiliation(s)
| | | | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (V.I.N.); (T.V.B.); (D.V.P.); (A.A.I.); (K.S.N.); (A.L.K.)
| | | | | | | | | |
Collapse
|
3
|
Lin H, Yan Y, Deng C, Sun N. Engineered Bimetallic MOF-Crafted Bullet Aids in Penetrating Serum Metabolic Traits of Chronic Obstructive Pulmonary Disease. Anal Chem 2024; 96:14688-14696. [PMID: 39208069 DOI: 10.1021/acs.analchem.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Metabolomics analysis based on body fluids, combined with high-throughput laser desorption and ionization mass spectrometry (LDI-MS), holds great potential and promising prospects for disease diagnosis and screening. On the other hand, chronic obstructive pulmonary disease (COPD) currently lacks innovative and powerful diagnostic and screening methods. In this work, CoFeNMOF-D, a metal-organic framework (MOF)-derived metal oxide nanomaterial, was synthesized and utilized as a matrix to assist LDI-MS for extracting serum metabolic fingerprints of COPD patients and healthy controls (HC). Through machine learning algorithms, successful discrimination between the COPD and HC was achieved. Furthermore, four potential biomarkers significantly downregulated in COPD were screened out. The disease diagnostic models based on the biomarkers demonstrated excellent diagnostic performance across different algorithms, with area under the curve (AUC) values reaching 0.931 and 0.978 in the training and validation sets, respectively. Finally, the potential metabolic pathways and disease mechanisms associated with the identified markers were explored. This work advances the application of LDI-based molecular diagnostics in clinical settings.
Collapse
Affiliation(s)
- Hairu Lin
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Xu R, Zhang S, Li J, Zhu J. Plasma and serum metabolic analysis of healthy adults shows characteristic profiles by subjects' sex and age. Metabolomics 2024; 20:43. [PMID: 38491253 PMCID: PMC10943143 DOI: 10.1007/s11306-024-02108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
INTRODUCTION Pre-analytical factors like sex, age, and blood processing methods introduce variability and bias, compromising data integrity, and thus deserve close attention. OBJECTIVES This study aimed to explore the influence of participant characteristics (age and sex) and blood processing methods on the metabolic profile. METHOD A Thermo UPLC-TSQ-Quantiva-QQQ Mass Spectrometer was used to analyze 175 metabolites across 9 classes in 208 paired serum and lithium heparin plasma samples from 51 females and 53 males. RESULTS Comparing paired serum and plasma samples from the same cohort, out of the 13 metabolites that showed significant changes, 4 compounds related to amino acids and derivatives had lower levels in plasma, and 5 other compounds had higher levels in plasma. Sex-based analysis revealed 12 significantly different metabolites, among which most amino acids and derivatives and nitrogen-containing compounds were higher in males, and other compounds were elevated in females. Interestingly, the volcano plot also confirms the similar patterns of amino acids and derivatives higher in males. The age-based analysis suggested that metabolites may undergo substantial alterations during the 25-35-year age range, indicating a potential metabolic turning point associated with the age group. Moreover, a more distinct difference between the 25-35 and above 35 age groups compared to the below 25 and 25-35 age groups was observed, with the most significant compound decreased in the above 35 age groups. CONCLUSION These findings may contribute to the development of comprehensive metabolomics analyses with confounding factor-based adjustment and enhance the reliability and interpretability of future large-scale investigations.
Collapse
Affiliation(s)
- Rui Xu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Shiqi Zhang
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Jieli Li
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Liu T, Zhou N, Bai Z, Cao Y, Zhang J, Wang Y, Zheng X, Feng W. A comparative metabolomics study on dried and processed Rehmannia Radix. Biomed Chromatogr 2023; 37:e5654. [PMID: 37070162 DOI: 10.1002/bmc.5654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
The efficacy of Rehmannia Radix changes after processing. However, the precise effect of processing on the properties of Rehmannia Radix is an intricate topic, as this effect cannot be explained by traditional methods. The purpose of this study was to investigate how processing methods influence the properties of Rehmannia Radix, as well as the changes in body function after administering dried Rehmannia Radix (RR) and processed Rehmannia Radix (PR) using a metabolomics approach. In addition, principal component analysis and orthogonal partial least-squares discriminant analysis models were generated using SIMCA-P 14.0 to evaluate the properties of RR and PR. Potential biomarkers were identified, and associated metabolic networks were established to clarify differences in the properties and efficacies of RR and PR. The results showed that RR and PR have cold and hot properties, respectively. RR can exert a hypolipidaemic effect by regulating nicotinate and nicotinamide metabolism. PR exerts a tonic effect and regulates the body's reproductive function through the regulation of alanine, aspartate and glutamate metabolism, arachidonic acid, pentose and glucuronate metabolism, respectively. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabolomics is a promising approach to determine the cold/hot properties of traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhiyao Bai
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yumin Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| |
Collapse
|