1
|
Li XL, Zhang JQ, Shen XJ, Zhang Y, Guo DA. Overview and limitations of database in global traditional medicines: A narrative review. Acta Pharmacol Sin 2024:10.1038/s41401-024-01353-1. [PMID: 39095509 DOI: 10.1038/s41401-024-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
The study of traditional medicine has garnered significant interest, resulting in various research areas including chemical composition analysis, pharmacological research, clinical application, and quality control. The abundance of available data has made databases increasingly essential for researchers to manage the vast amount of information and explore new drugs. In this article we provide a comprehensive overview and summary of 182 databases that are relevant to traditional medicine research, including 73 databases for chemical component analysis, 70 for pharmacology research, and 39 for clinical application and quality control from published literature (2000-2023). The review categorizes the databases by functionality, offering detailed information on websites and capacities to facilitate easier access. Moreover, this article outlines the primary function of each database, supplemented by case studies to aid in database selection. A practical test was conducted on 68 frequently used databases using keywords and functionalities, resulting in the identification of highlighted databases. This review serves as a reference for traditional medicine researchers to choose appropriate databases and also provides insights and considerations for the function and content design of future databases.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan-Jing Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhao L, Wang S, Xu X, Guo W, Yang J, Liu Y, Xie S, Piao G, Xu T, Wang Y, Xu Y. Integrated metabolomics and network pharmacology to reveal the lipid-lowering mechanisms of Qizha Shuangye granules in hyperlipidemic rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3265-3274. [PMID: 38087399 DOI: 10.1002/jsfa.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Qizha Shuangye granules (QSG) comprise six traditional Chinese herbal medicines (TCHMs), which have a long history of treating hyperlipidemia (HLP) in China. This study aimed to evaluate the potential lipid-lowering effects of QSG in an HLP rat model and investigate possible mechanisms. The HLP rat model was induced by a high-fat diet. Lipid-related indicators in serum were detected. Serum and liver metabolites were investigated using a liquid chromatography-mass spectrometry-based metabolomics approach. A herb-compound-target-metabolite (H-C-T-M) network was further constructed to reveal the possible molecular mechanism of QSG to alleviate HLP. RESULTS The administration of QSG inhibited the HLP-induced changes in total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and non-esterified fatty acid (NEFA) levels. Additionally, QSG significantly attenuated the liver histopathological changes induced by HLP. Metabolomic analysis showed the serum and liver metabolic disorders presented in HLP rats. QSG can reverse the abnormal metabolism caused by HLP. Through network pharmacology analysis, key proteins such as androgen receptor, 3-hydroxy-3-methylglutaryl-CoA reductase, and peroxisome proliferator-activated receptor-α were screened out, and they were speculated to be possible therapeutic targets for QSG to treat HLP. CONCLUSION The present study integrated metabolomics and network pharmacology analysis to reveal the efficacy and possible mechanism of QSG in treating HLP, which provides a new reference for the research and development of QSG as a functional food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- College of Pharmacy, Yanbian University, Yanji, China
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Shuyue Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohang Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Wenjun Guo
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Jingxuan Yang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yue Liu
- Key Laboratory for Analysis Methods of Active Ingredients in Traditional Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Shengxu Xie
- Key Laboratory for Analysis Methods of Active Ingredients in Traditional Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Guangchun Piao
- College of Pharmacy, Yanbian University, Yanji, China
- Key Laboratory for Natural Resource of Changbai Mountain, Yanbian University, Yanji, China
| | - Tunhai Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| |
Collapse
|
3
|
Sun Y, Han Y, Guo W, Xu X, Zhao L, Yang J, Li L, Wang Y, Xu Y. Multi-omics analysis of lung tissue metabolome and proteome reveals the therapeutic effect of Shegan Mahuang Decoction against asthma in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117650. [PMID: 38135230 DOI: 10.1016/j.jep.2023.117650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shegan Mahuang Decoction (SMD) is a classic traditional Chinese medicine (TCM) formula for asthma treatment, but the anti-asthma mechanism of SMD is still not fully studied. AIMS OF THE STUDY In this study, we established an ovalbumin (OVA)-induced asthma rat model and treated it with SMD to observe its anti-asthma effect and explore the related mechanism. MATERIALS AND METHODS We evaluated the anti-inflammatory effect of SMD via testing the levels of immunoglobulin E (IgE), C-reactive protein (CRP), interleukin-4 (IL-4), interleukin-6 (IL-6) in serum and performing the hematoxylin-eosin (H&E) staining of lung tissue slices. We analyzed the variations of metabolites and proteins in the lung tissue of different groups using liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics and TMT-based proteomics approaches. The metabolic biomarkers and differentially expressed proteins (DEPs) were picked, and the related signal transduction pathways were also investigated. In addition, the key proteins on the signaling pathway were validated through western blotting (WB) experiment to reveal the anti-asthma mechanism of SMD. RESULTS The results showed that the SMD could significantly reduce the serum levels of IgE, CRP, IL-4, and IL-6 and attenuate the OVA-induced pathological changes in lung tissue. A total of 34 metabolic biomarkers and 84 DEPs were screened from rat lung tissue, which were mainly associated with lipid metabolism, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, the excessive production of reactive oxygen species (ROS), and lysosome pathway. Besides, SMD could inhibit the myeloid differentiation factor 88 (MyD88)/inhibitor of kappa B kinase (IKK)/nuclear factor-kappa B (NF-κB) signaling pathway to exhibit anti-inflammatory activities. CONCLUSIONS SMD exhibited a therapeutic effect on asthma, which possibly be exerted by inhibiting the MyD88/IKK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuanhe Sun
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China; The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, China
| | - Yuqing Han
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Wenjun Guo
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Xiaohang Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Liang Zhao
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Jingxuan Yang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Lixin Li
- The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, China.
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| |
Collapse
|
4
|
Xu Y, Liu RR, Yu XJ, Liu XN, Zhang X, Jiang ZH, Cong ZF, Li QQ, Gao P. Quality markers of Dajianzhong decoction based on multicomponent qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:146-162. [PMID: 37731278 DOI: 10.1002/pca.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-β-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| | - Run-Run Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Jun Yu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xiao-Nan Liu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhi-Hui Jiang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhu-Feng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, P. R. China
| | - Qin-Qing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| |
Collapse
|
5
|
Li X, Guo W, Zhao L, Xu D, Xu X, Han Y, Wang C, Jiang Y, Wang Y, Xu Y. Investigating the in vivo effect of Tribulus terrestris extract in middle cerebral artery occlusion rats using LC-MS-based metabolomics combined with molecular docking. Biomed Chromatogr 2023; 37:e5614. [PMID: 36883198 DOI: 10.1002/bmc.5614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Tribulus terrestris L. fruit (TT) is a traditional Chinese herbal medicine used to treat ischemic stroke (IS). This study aimed to investigate the protective effect of TT extract, named TT15, on middle cerebral artery occlusion (MCAO) rats using metabolomics and molecular docking and find the targets of action and the material basis of TT15 against IS. The results of the infarct volume and neurological defect scores confirmed the efficacy of TT15. Serum metabolomics analysis using LC-MS revealed that model group animals experienced a variety of metabolic disturbances when compared to the sham group. TT15 can restore the MCAO-induced serum metabolite changes by modulating multiple metabolic pathways. Six enzymes were highlighted by the metabolite-reaction-enzyme-gene (M-R-E-G) network analysis, which might be the possible targets for the TT15 against IS. Molecular docking analysis was applied to show the binding affinities between active compounds and these enzymes. The representative docking mode with the lowest binding energy between three compounds and phospholipase A 2 (PLA2) and peroxidase (POD) was displayed by the ribbon binding map. This study profiles the metabolic changes in MCAO-induced IS and investigates the efficacy and the corresponding mechanism of TT15 in the treatment of IS.
Collapse
Affiliation(s)
- Xingxing Li
- School of Pharmaceutical Sciences, Yanbian University, Yanji, China.,Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Wenjun Guo
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Liang Zhao
- School of Pharmaceutical Sciences, Yanbian University, Yanji, China.,Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Dandan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Xiaohang Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yuqing Han
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Chengyan Wang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yingzi Jiang
- School of Pharmaceutical Sciences, Yanbian University, Yanji, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| |
Collapse
|