1
|
Hirosawa KM, Sato Y, Kasai RS, Yamaguchi E, Komura N, Ando H, Hoshino A, Yokota Y, Suzuki KGN. Uptake of small extracellular vesicles by recipient cells is facilitated by paracrine adhesion signaling. Nat Commun 2025; 16:2419. [PMID: 40075063 PMCID: PMC11903687 DOI: 10.1038/s41467-025-57617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Small extracellular vesicles (sEVs) play crucial roles in intercellular communication. However, the internalization of individual sEVs by recipient cells has not been directly observed. Here, we examined these mechanisms using state-of-the-art imaging techniques. Single-molecule imaging shows that tumor-derived sEVs can be classified into several subtypes. Simultaneous single-sEV particle tracking and observation of super-resolution movies of membrane invaginations in living cells reveal that all sEV subtypes are internalized via clathrin-independent endocytosis mediated by galectin-3 and lysosome-associated membrane protein-2C, while some subtypes that recruited raft markers are internalized through caveolae. Integrin β1 and talin-1 accumulate in recipient cell plasma membranes beneath all sEV subtypes. Paracrine, but not autocrine, sEV binding triggers Ca2+ mobilization induced by the activation of Src family kinases and phospholipase Cγ. Subsequent Ca2+-induced activation of calcineurin-dynamin promotes sEV internalization, leading to the recycling pathway. Thus, we clarified the detailed mechanisms of sEV internalization driven by paracrine adhesion signaling.
Collapse
Affiliation(s)
- Koichiro M Hirosawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Rinshi S Kasai
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, 104-0045, Japan
| | - Eriko Yamaguchi
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Innovation Research Center for Quantum Medicine. Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan
| | - Ayuko Hoshino
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 153-8904, Japan
- Inamori Research Institute for Science, Inamori Foundation, Kyoto, 600-8411, Japan
| | - Yasunari Yokota
- Department of Electrical, Electronics and Computer Engineering, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, 104-0045, Japan.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
- Innovation Research Center for Quantum Medicine. Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
2
|
Sim J, Park CE, Cho I, Min K, Eom M, Han S, Jeon H, Cho ES, Lee Y, Yun YH, Lee S, Cheon DH, Kim J, Kim M, Cho HJ, Park JW, Kumar A, Chong Y, Kang JS, Piatkevich KD, Jung EE, Kang DS, Kwon SK, Kim J, Yoon KJ, Lee JS, Kim CH, Choi M, Kim JW, Song MR, Choi HJ, Boyden ES, Yoon YG, Chang JB. Nanoscale Resolution Imaging of Whole Mouse Embryos Using Expansion Microscopy. ACS NANO 2025; 19:7910-7927. [PMID: 39964913 DOI: 10.1021/acsnano.4c14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Nanoscale imaging of whole vertebrates is essential for the systematic understanding of human diseases, yet this goal has not yet been achieved. Expansion microscopy (ExM) is an attractive option for accomplishing this aim; however, the expansion of even mouse embryos at mid- and late-developmental stages, which have fewer calcified body parts than adult mice, is yet to be demonstrated due to the challenges of expanding calcified tissues. Here, we introduce a state-of-the-art ExM technique, termed whole-body ExM, that utilizes cyclic digestion. This technique allows for the super-resolution, volumetric imaging of anatomical structures, proteins, and endogenous fluorescent proteins (FPs) within embryonic and neonatal mice by expanding them 4-fold. The key feature of whole-body ExM is the alternating application of two enzyme compositions repeated multiple times. Through the simple repetition of this digestion process with an increasing number of cycles, mouse embryos of various stages up to E18.5, and even neonatal mice, which display a dramatic difference in the content of calcified tissues compared to embryos, are expanded without further laborious optimization. Furthermore, the whole-body ExM's ability to retain FP signals allows the visualization of various neuronal structures in transgenic mice. Whole-body ExM could facilitate studies of molecular changes in various vertebrates.
Collapse
Affiliation(s)
- Jueun Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chan E Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeongbae Min
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 21102, Republic of Korea
| | - Minho Eom
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seungjae Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyungju Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun-Seo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Hyun Yun
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Deok-Hyeon Cheon
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Won Park
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ajeet Kumar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
| | - Jeong Seuk Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Du-Seock Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyung Jin Choi
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Edward S Boyden
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, United States
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Young-Gyu Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Bioimaging Data Curation Center, Seoul 03760, Republic of Korea
| |
Collapse
|
3
|
Štefl M, Takamiya M, Middel V, Tekpınar M, Nienhaus K, Beil T, Rastegar S, Strähle U, Nienhaus GU. Caveolae disassemble upon membrane lesioning and foster cell survival. iScience 2024; 27:108849. [PMID: 38303730 PMCID: PMC10831942 DOI: 10.1016/j.isci.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Repair of lesions in the plasma membrane is key to sustaining cellular homeostasis. Cells maintain cytoplasmic as well as membrane-bound stores of repair proteins that can rapidly precipitate at the site of membrane lesions. However, little is known about the origins of lipids and proteins for resealing and repair of the plasma membrane. Here we study the dynamics of caveolar proteins after laser-induced lesioning of plasma membranes of mammalian C2C12 tissue culture cells and muscle cells of intact zebrafish embryos. Single-molecule diffusivity measurements indicate that caveolar clusters break up into smaller entities after wounding. Unlike Annexins and Dysferlin, caveolar proteins do not accumulate at the lesion patch. In caveolae-depleted cavin1a knockout zebrafish embryos, lesion patch formation is impaired, and injured cells show reduced survival. Our data suggest that caveolae disassembly releases surplus plasma membrane near the lesion to facilitate membrane repair after initial patch formation for emergency sealing.
Collapse
Affiliation(s)
- Martin Štefl
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Volker Middel
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Miyase Tekpınar
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana−Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Park J, Jin S, Jang J, Seo D. Single-Molecule Imaging of Membrane Proteins on Vascular Endothelial Cells. J Lipid Atheroscler 2023; 12:58-72. [PMID: 36761059 PMCID: PMC9884557 DOI: 10.12997/jla.2023.12.1.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/26/2023] Open
Abstract
Transporting substances such as gases, nutrients, waste, and cells is the primary function of blood vessels. Vascular cells use membrane proteins to perform crucial endothelial functions, including molecular transport, immune cell infiltration, and angiogenesis. A thorough understanding of these membrane receptors from a clinical perspective is warranted to gain insights into the pathogenesis of vascular diseases and to develop effective methods for drug delivery through the vascular endothelium. This review summarizes state-of-the-art single-molecule imaging techniques, such as super-resolution microscopy, single-molecule tracking, and protein-protein interaction analysis, for observing and studying membrane proteins. Furthermore, recent single-molecule studies of membrane proteins such as cadherins, integrins, caveolins, transferrin receptors, vesicle-associated protein-1, and vascular endothelial growth factor receptor are discussed.
Collapse
Affiliation(s)
- Jiseong Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| | - Siwoo Jin
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| | - Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea
| |
Collapse
|