1
|
Gou R, Zhou S, Shi C, Sun Q, Huang Z, Zhao J, Xiao Y, Lei S, Cheng B. Control of positive and negative photo- and thermal-responses in a single PbI 2@CH 3NH 3PbI 3 micro/nanowire-based device for real-time sensing, nonvolatile memory, and logic operation. MATERIALS HORIZONS 2024; 11:2258-2270. [PMID: 38439663 DOI: 10.1039/d4mh00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
CH3NH3PbI3 has shown great potential for photodetectors and photovoltaic devices due to its excellent positive response to visible light. However, its real-time response characteristics hinder its application in optical memory and logic operation; moreover, the presence of excessive PbI2 is a double-edged sword. Herein, we constructed a dual-terminal device using a single CH3NH3PbI3 micro/nanowire with two Ag electrodes, and then in situ introduced PbI2 quantum dots (QDs) as hole trap centres by thermal decomposition at 160 °C. An anomalous negative photoconductivity (NPC) effect for sub-bandgap light below the PbI2 bandgap is obtained. Importantly, an electrically erasable nonvolatile photomemory can be realized. Furthermore, the device also exhibits an abnormal positive thermal resistance (PTR)-related thermomemory effect, and the thermal-induced high-resistance state (HRS) can be erased by a large bias or an illumination of 365 nm super-bandgap UV light. Additionally, logical "OR" gate operations are achieved through a combination of 650 nm sub-bandgap light and a 70 °C temperature-induced HRS, as well as a large bias and 365 nm super-bandgap light-triggered low-resistance state. These effects are attributed to the excitation and injection of holes in QDs and structural defect traps. This multifunctional device, integrating real-time sensing, nonvolatile memory, and logical operation, holds significant potential for novel electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Runna Gou
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Shuanfu Zhou
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Cencen Shi
- Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Qinghua Sun
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Zhikang Huang
- Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Jiangxi 330031, P. R. China.
- Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| |
Collapse
|
2
|
Wang Y, Guo D, Jiang J, Wang H, Shang Y, Zheng J, Huang R, Li W, Wang S. Element Regulation and Dimensional Engineering Co-Optimization of Perovskite Memristors for Synaptic Plasticity Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422456 DOI: 10.1021/acsami.3c18053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Capitalizing on rapid carrier migration characteristics and outstanding photoelectric conversion performance, halide perovskite memristors demonstrate an exceptional resistive switching performance. However, they have consistently faced constraints due to material stability issues. This study systematically employs elemental modulation and dimension engineering to effectively control perovskite memristors with different dimensions and A-site elements. Compared to pure 3D and 2D perovskites, the quasi-2D perovskite memristor, specifically BA0.15MA0.85PbI3, is identified as the optimal choice through observations of resistive switching (HRS current < 10-5 A, ON/OFF ratio > 103, endurance cycles > 1000, and retention time > 104 s) and synaptic plasticity characteristics. Subsequently, a comprehensive investigation into various synaptic plasticity aspects, including paired-pulse facilitation (PPF), spike-variability-dependent plasticity (SVDP), spike-rate-dependent plasticity (SRDP), and spike-timing-dependent plasticity (STDP), is conducted. Practical applications, such as memory-forgetting-memory and recognition of the Modified National Institute of Standards and Technology (MNIST) database handwritten data set (accuracy rate reaching 94.8%), are explored and successfully realized. This article provides good theoretical guidance for synaptic-like simulation in perovskite memristors.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dingyun Guo
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junyu Jiang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hexin Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yueyang Shang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiawei Zheng
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruixi Huang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Li
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
He S, Yu X, Wang J, Zhong W, Cheng B, Zhao J. Attaining inhibition of sneak current and versatile logic operations in a singular halide perovskite memristive device by introducing appropriate interface barriers. NANOSCALE 2024; 16:1102-1114. [PMID: 38008998 DOI: 10.1039/d3nr04633h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Emerging resistive switching devices hold the potential to realize densely packed passive nanocrossbar arrays, suitable for deployment as random access memory devices (ReRAMs) in both embedded and high-capacity storage applications. In this study, we have engineered ReRAMs comprising ITO/(UVO-treated) amorphous ZnO (a-ZnO)/MAPbI3/Ag which effectively mitigate cross-talk currents without additional components. Significantly, we successfully executed a comprehensive set of 12 distinct 2-input sequential logic functions in a single halide perovskite ReRAM unit for the first time. Furthermore, these logic functions are devoid of any dependency on external light sources, entail merely 1 or 2 logic steps, and showcase symmetrical operability. A superior resistive switching behavior was achieved by harmonizing the charge transport within the bulk MAPbI3 and the tunneling barriers at the interfaces. The outcomes indicate progress in mitigating cross-talk and executing multiple logic functions within a single halide perovskite ReRAM unit, offering a new perspective for the advancement of halide perovskite ReRAMs.
Collapse
Affiliation(s)
- Song He
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| | - Xingyu Yu
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| | - Juanjuan Wang
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| | - WenKang Zhong
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| | - Baochang Cheng
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jie Zhao
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| |
Collapse
|
4
|
Gou R, Shi C, Zhou S, Huang Z, Ouyang Z, He S, Zhao J, Xiao Y, Lei S, Cheng B. Self-Powered Photodetector Based on Ag/CH 3NH 3PbI 3/C Asymmetric Dual-Terminal Device. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54863-54874. [PMID: 37966314 DOI: 10.1021/acsami.3c13839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
CH3NH3PbI3 is capable of exhibiting a superior photoresponse to visible light, but its self-powered devices are typically formed through p-n junctions. In this study, we fabricated a Ag/CH3NH3PbI3/C dual-terminal asymmetric electrode device using a single CH3NH3PbI3 perovskite micro/nanowire, enabling both the photoresponse and self-powered characteristics of CH3NH3PbI3 to visible light. Compared with traditional p-n junction devices, this simple device demonstrates enhanced interface photovoltaic effects by optimizing the combination of the Ag electrode with CH3NH3PbI3, resulting in superior self-powered characteristics. Under low bias voltage, the device achieves a significant on/off ratio of 103, with superior sensitivity and responsivity as well as a maximum rectification ratio of about 12. The photogenerated voltage and current reach approximately 0.8 V and 2 nA, respectively. This simple, compact, and self-powered asymmetric device exhibits great potential for applications in self-powered optoelectronics and wearable devices. This research provides a promising approach for recognizing and utilizing surface state effects in single nanoscale structures.
Collapse
Affiliation(s)
- Runna Gou
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Cencen Shi
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, P. R. China
| | - Shuanfu Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Zhikang Huang
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, P. R. China
- School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330038, P. R. China
| | - Song He
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, P. R. China
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
5
|
Hong Z, Quan H, Ke C, Ouyang Z, Cheng B. Controllably modulated asymmetrical photoresponse with a nonvolatile memory effect in a single CH 3NH 3PbI 3 micro/nanowire for photorectifiers and photomemory. NANOSCALE 2023; 15:13359-13370. [PMID: 37527151 DOI: 10.1039/d3nr01921g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nanostructured hybrid organic-inorganic perovskites exhibit remarkable photodetection performance due to their abundant surface states and high responsivity to visible light. However, in traditional photodetectors with a symmetrical configuration of two-terminal electrodes, the photoresponse is independent of bias polarity. Moreover, for self-powered photodetectors, an asymmetric structure of the chemical composition, such as p-n and Schottky junctions, and two different electrodes are necessary. Herein, we demonstrate a modulable asymmetrical photoresponse by packing only one electrode end in a single CH3NH3PbI3 micro/nanowire with two symmetrical Ag electrodes. This not only enables the high performance of light- and bias-modulated multifunctional photorectifiers and self-powered photodetectors, but also allows controllable implementation of nonvolatile photomemory with a tunable spectral responsivity and range. At an unpacked electrode interface, trace moisture in the environment promotes a good bonding of Ag+ and I-, substantially decreasing the interface barrier. Conversely, at a packed electrode interface, abundant surface states can be well preserved, leading to a high interface barrier. Notably, under a large voltage and strong light, the redox of Ag/AgI at the unpacked electrode interface and the injection and ejection of holes at the packed electrode interface can be reversibly conducted by inverting the voltage polarity, enabling a controllable nonvolatile modulation. Therefore, by clarifying the actual origin of the photoelectrical response of CH3NH3PbI3 micro/nanowires at electrode interfaces, high-performance multifunctional photorectifiers and self-powered photodetectors based on asymmetrical interface photovoltaic effects with two symmetrical electrodes can be controllably realized. Furthermore, by precise cooperative modulation of two electrode interface states with a large voltage and strong illumination, nonvolatile photomemory with a tunable spectral responsivity and range can be implemented.
Collapse
Affiliation(s)
- Zhen Hong
- School of Materials Science and Engineering, Nanchang Hangkong University, Jiangxi 330063, P. R. China
| | - Hongying Quan
- School of Materials Science and Engineering, Nanchang Hangkong University, Jiangxi 330063, P. R. China
| | - Changying Ke
- School of Environment and Energy, Jiangxi Modern Polytechnic College, Jiang Xi 330095, P. R. China
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China.
| | - Baochang Cheng
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China.
- School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, P. R. China
| |
Collapse
|
6
|
Cao Z, Sun B, Zhou G, Mao S, Zhu S, Zhang J, Ke C, Zhao Y, Shao J. Memristor-based neural networks: a bridge from device to artificial intelligence. NANOSCALE HORIZONS 2023; 8:716-745. [PMID: 36946082 DOI: 10.1039/d2nh00536k] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the beginning of the 21st century, there is no doubt that the importance of artificial intelligence has been highlighted in many fields, among which the memristor-based artificial neural network technology is expected to break through the limitation of von Neumann so as to realize the replication of the human brain by enabling strong parallel computing ability and efficient data processing and become an important way towards the next generation of artificial intelligence. A new type of nanodevice, namely memristor, which is based on the variability of its resistance value, not only has very important applications in nonvolatile information storage, but also presents obsessive progressiveness in highly integrated circuits, making it one of the most promising circuit components in the post-Moore era. In particular, memristors can effectively simulate neural synapses and build neural networks; thus, they can be applied for the preparation of various artificial intelligence systems. This study reviews the research progress of memristors in artificial neural networks in detail and highlights the structural advantages and frontier applications of neural networks based on memristors. Finally, some urgent problems and challenges in current research are summarized and corresponding solutions and future development trends are put forward.
Collapse
Affiliation(s)
- Zelin Cao
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Shaanxi International Joint Research Center for Applied Technology of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing 400715, China
| | - Shuangsuo Mao
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Shouhui Zhu
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jie Zhang
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Chuan Ke
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yong Zhao
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou, Fujian 350117, China
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jinyou Shao
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|