1
|
Zhao C, Li W, Hu J, Hong C, Xing Y, Wang H, Ling W, Wang Y, Feng L, Feng W, Hou J, Zhai X, Liu C. Preparation of functionalized porous chitin carbon to enhance the H 2O 2 production and Fe 3+ reduction properties of Electro-Fenton cathodes for efficient degradation of RhB. ENVIRONMENTAL RESEARCH 2024; 261:119775. [PMID: 39134112 DOI: 10.1016/j.envres.2024.119775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The performance of Electro-Fenton (EF) cathode materials is primarily assessed by H2O2 yield and Fe3+ reduction efficiency. This study explores the impact of pore structure in chitin-based porous carbon on EF cathode effectiveness. We fabricated mesoporous carbon (CPC-700-2) and microporous carbon (ZPC-700-3) using template and activation methods, retaining nitrogen from the precursors. CPC-700-2, with mesopores (3-5 nm), enhanced O2 diffusion and oxygen reduction, producing up to 778 mg/L of H2O2 in 90 min. ZPC-700-3, with a specific surface area of 1059.83 m2/g, facilitated electron transport and ion diffusion, achieving a Fe2+/Fe3+ conversion rate of 79.9%. EF systems employing CPC-700-2 or ZPC-700-3 as the cathode exhibited superior degradation performance, achieving 99% degradation of Rhodamine B, efficient degradation, and noticeable decolorization. This study provides a reference for the preparation of functionalized carbon cathode materials for efficient H2O2 production and effective Fe3+ reduction in EF systems.
Collapse
Affiliation(s)
- Chengwang Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Li
- Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China
| | - Jiashuo Hu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Hong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yijie Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lihui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weibo Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiachen Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinlin Zhai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chenran Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Zhang B, Feng X, Ma R, Sheng R, Wang D, Chen F, Wang Y, Xu M, Ai L, Guo N, Wang L. Constructing the Interconnected and Hierarchical Nanoarchitectonics in Coal-Derived Carbon for High-Performance Supercapacitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13467-13475. [PMID: 38889438 DOI: 10.1021/acs.langmuir.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Because of the deep and zigzag microporous structure, porous carbon materials exhibit inferior capacitive performance and sluggish electrochemical kinetics for supercapacitor electrode materials. Herein, a single-step carbonation and activation approach was utilized to synthesize coal-based porous carbon with an adjustable pore structure, using CaO as a hard template, KOH as an activator, and oxidized coal as precursors to carbon. The obtained sample possesses an interconnected and hierarchical porous structure, higher SSA (1060 m2 g-1), suitable mesopore volume (0.25 cm3 g-1), and abundant surface heteroatomic functional groups. Consequently, the synthesized carbon exhibits an exceptionally high specific capacitance of 323 F g-1 at 1 A g-1, along with 80.3% capacitance retention at 50 A g-1. The assembled two-electrode configuration demonstrates a remarkable capacitance retention of up to 95% and achieves Coulombic efficiency of nearly 100% with 10,000 cycles in a 6 M KOH electrolyte. Furthermore, the Zn-ion hybrid capacitor also exhibits a specific capacity of up to 139.1 mA h g-1 under conditions of 0.2 A g-1. This work offers a simple method in preparation of coal-based porous carbon with controllable pore structure.
Collapse
Affiliation(s)
- Binyuan Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Xia Feng
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Rui Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Rui Sheng
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Danting Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Feifei Chen
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Yuanyuan Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Mengjiao Xu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Lili Ai
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| |
Collapse
|
3
|
Ferdous AR, Shah SS, Shah SNA, Johan BA, Al Bari MA, Aziz MA. Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage. Molecules 2024; 29:2081. [PMID: 38731570 PMCID: PMC11085522 DOI: 10.3390/molecules29092081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This comprehensive review addresses the need for sustainable and efficient energy storage technologies against escalating global energy demand and environmental concerns. It explores the innovative utilization of waste materials from oil refineries and coal processing industries as precursors for carbon-based electrodes in next-generation energy storage systems, including batteries and supercapacitors. These waste-derived carbon materials, such as semi-coke, coal gasification fine ash, coal tar pitch, petroleum coke, and petroleum vacuum residue, offer a promising alternative to conventional electrode materials. They present an optimal balance of high carbon content and enhanced electrochemical properties while promoting environmental sustainability through effectively repurposing waste materials from coal and hydrocarbon industries. This review systematically examines recent advancements in fabricating and applying waste-derived carbon-based electrodes. It delves into the methodologies for converting industrial by-products into high-quality carbon electrodes, with a particular emphasis on carbonization and activation processes tailored to enhance the electrochemical performance of the derived materials. Key findings indicate that while higher carbonization temperatures may impede the development of a porous structure, using KOH as an activating agent has proven effective in developing mesoporous structures conducive to ion transport and storage. Moreover, incorporating heteroatom doping (with elements such as sulfur, potassium, and nitrogen) has shown promise in enhancing surface interactions and facilitating the diffusion process through increased availability of active sites, thereby demonstrating the potential for improved storage capabilities. The electrochemical performance of these waste-derived carbon materials is evaluated across various configurations and electrolytes. Challenges and future directions are identified, highlighting the need for a deeper understanding of the microstructural characteristics that influence electrochemical performance and advocating for interdisciplinary research to achieve precise control over material properties. This review contributes to advancing electrode material technology and promotes environmental sustainability by repurposing industrial waste into valuable resources for energy storage. It underscores the potential of waste-derived carbon materials in sustainably meeting global energy storage demands.
Collapse
Affiliation(s)
- Ar Rafi Ferdous
- Department of Petroleum and Mining Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh;
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Syed Niaz Ali Shah
- Innovation and Technology Transfer, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Bashir Ahmed Johan
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
| | - Md Abdullah Al Bari
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Md. Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Zhang G, Zhang Y, Wang J, Yu J, Wang K, Li G, Guan T. Nitrogen-functionalization of carbon materials for supercapacitor: Combining with nanostructure directly is superior to doping amorphous element. J Colloid Interface Sci 2024; 660:478-489. [PMID: 38246051 DOI: 10.1016/j.jcis.2024.01.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Just how heteroatomic functionalization enhances electrochemical capacity of carbon materials is a recent and widely studied field in scientific research. However, there is no consensus on whether combining with heteroatom-bearing nanostructures directly or doping amorphous elements is more advantageous. Herein, two kinds of porous carbon nanosheets were prepared from coal tar pitch through anchoring graphitic carbon nitride (PCNs/GCNs-5) or doping amorphous nitrogen element (PCNs/N). The structural characteristics and electrochemical properties of the two PCNs were revealed and compared carefully. It can be found that the amorphous nitrogen of PCNs/N will have a grievous impact on its carbon skeleton network, resulting in reduced stability in charge and discharge process, while the structural collapse of carbon network could be avoided in PCNs/GCNs-5 by the heteroatoms in the form of nanostructure. Particularly, PCNs/GCNs-5 exhibits extremely high specific capacity of 388 F g-1 at 1 A g-1, and splendid the capacitance retention rate of 98% after 10,000 cycles of charge and discharge, which are overmatch than the amorphous nitrogen doped carbon materials reported recently and PCNs/N. The combining strategy with nanostructure will inspire the design of carbon materials towards high-performance supercapacitor.
Collapse
Affiliation(s)
- Guoli Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| | - Yi Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Jianlong Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Jiangyong Yu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Kaiying Wang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Gang Li
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| | - Taotao Guan
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| |
Collapse
|
5
|
FERRY MA, MARUYAMA J, ASOH TA, UYAMA H. Facile Synthesis of Templated Activated Carbon from Cellulose Nanofibers and MgO Nanoparticles via Integrated Carbonization-activation Method as an Eco-friendly Supercapacitor. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mark Adam FERRY
- Osaka University Graduate School of Engineering, Division of Applied Chemistry
| | - Jun MARUYAMA
- Osaka Research Institute of Industrial Science and Technology, Research Division of Environmental Technology
| | - Taka-Aki ASOH
- Osaka Research Institute of Industrial Science and Technology, Research Division of Environmental Technology
| | - Hiroshi UYAMA
- Osaka University Graduate School of Engineering, Division of Applied Chemistry
| |
Collapse
|