1
|
Li QL, Zhao M, Hao RJ, Wei J, Wang XX, Yang C, Zhao M, Tan YH, Tang YZ. High-Temperature Phase Transition with Switchable Dielectric Behavior and Significant Photoluminescence Changes in a Zero-Dimensional Hybrid SbBr 6 Perovskite. Inorg Chem 2024; 63:3411-3417. [PMID: 38311915 DOI: 10.1021/acs.inorgchem.3c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In the past decade, metal halide materials have been favored by many researchers because of their excellent physical and chemical properties under thermal, electrical, and light stimuli, such as ferroelectricity, dielectric, nonlinearity, fluorescence, and semiconductors, greatly promoting their application in optoelectronic devices. In this study, we successfully constructed an unleaded organic-inorganic hybrid perovskite crystal: [Cl-C6H4-(CH2)2NH3]3SbBr6 (1), which underwent a high-temperature reversible phase transition near Tp = 368 K. The phase transition behavior of 1 was characterized by differential scanning calorimetry, accompanied by a thermal hysteresis of 6 K. In addition, variable-temperature Raman spectroscopy analysis and PXRD further verified the sensitivity of 1 to temperature and the phase transition from low symmetry to high symmetry. Temperature-dependent dielectric testing shows that 1 can be a sensitive switching dielectric constant switching material. Remarkably, 1 exhibits strong photoluminescence emission with a wavelength of 478 nm and a narrow band gap of 2.7 eV in semiconductors. As the temperature increases and decreases, fluorescence undergoes significant changes, especially near Tc, which further confirms the reversible phase transition of 1. All of these findings provide new avenues for designing and assembling new phase change materials with high Tp and photoluminescence properties.
Collapse
Affiliation(s)
- Qiao-Lin Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Meng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Rong-Jie Hao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Xi-Xi Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Chun Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Yu-Hui Tan
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Yun-Zhi Tang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| |
Collapse
|
2
|
Han LJ, Liu J, Shao T, Jia QQ, Su CY, Fu DW, Lu HF. A Cd-based perovskite with optical-electrical multifunctional response. NEW J CHEM 2022. [DOI: 10.1039/d2nj03330e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) organic-inorganic hybrid perovskites (OIHPs) have drawn tremendous attention on account of their structural tunability, simple synthesis mothed, superior properties. Among them, 2D cadmium-based perovskites, exhibiting reversible phase transition,...
Collapse
|