1
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Synthesis and characterization of cellulose fibers modified zinc phosphate/hydroxyapatite core-shell as enhanced carrier of cisplatin: Loading, release, and cytotoxicity. Int J Biol Macromol 2024; 277:134169. [PMID: 39097057 DOI: 10.1016/j.ijbiomac.2024.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
The uncontrolled administration of the cisplatin drug (CPTN) resulted in numerous drawbacks. Therefore, effective, affordable, and biocompatible delivery systems were suggested to regulate the loading, release, and therapeutic effect of CPTN. Zinc phosphate/hydroxyapatite hybrid form (ZP/HP) and core-shell nano-rod morphology, as well as its functionalized derivative with cellulose (CF@ZP/HP), were synthesized by the facile dissolution precipitation method followed by mixing with cellulose fibers, respectively. The developed CF@ZP/HP displayed remarkable enhanced CPTN loading properties (418.2 mg/g) as compared to ZP/HP (259.8 mg/g). The CPTN loading behaviors into CF@ZP/HP follow the Langmuir isotherm properties (R2 > 0.98) in addition to the kinetic activities of the pseudo-first-order model (R2 > 0.96). The steric assessment validates the notable increase in the existing loading receptors after the functionalization of ZP/HP with CF from 57.7 mg/g (ZP/HP) to 90.5 mg/g. The functionalization also impacted the capacity of each existing receptor to be able to ensure 5 CPTN molecules. This, in addition to the loading energies (<40 kJ/mol), donates the loading of CPTN by physical multi-molecular processes and in vertical orientation. The CPTN releasing patterns of CF@ZP/HP exhibit slow and controlled properties (95.7 % after 200 h at pH 7.4 and 100 % after 120 h at pH 5.5), but faster than the properties of ZP/HP. The kinetic modeling of the release activities together with the diffusion exponent (>0.45) reflected the release of CPTN according to both erosion and diffusion mechanisms. The loading of CPTN into both ZP/HP and CF@ZP/HP also resulted in a marked enhancement in the anticancer activity of CPTN against human cervical epithelial malignancies (HeLa) (cell viability = 5.6 % (CPTN), 3.2 % (CPTN loaded ZP/HP), and 1.12 % (CPTN loaded CF@ZP/HP)).
Collapse
Affiliation(s)
- May N Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt; Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
| |
Collapse
|
2
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Bellucci S, Abukhadra MR. Insight into the integration effect of chitosan and β-cyclodextrin on the properties of zinc-phosphate/hydroxyapatite hybrid as delivery structures for 5-fluorouracil: loading and release profiles. Front Chem 2024; 12:1456057. [PMID: 39324064 PMCID: PMC11422123 DOI: 10.3389/fchem.2024.1456057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Zinc-phosphate/hydroxyapatite hybrid form (ZP/HP) in core-shell nanostructure was developed and functionalized with both chitosan (CS@ZP/HP) and β-cyclodextrin (CD@ZP/HP) as bio-composite of enhanced physicochemical and biological properties. These structures were assessed as potential deliveries of 5-fluorouracil, exhibiting enhanced loading, release, and anti-cancer behaviors. The functionalization strongly prompted the loading effectiveness to be 301.3 mg/g (CS@ZP/HP) and 342.8 mg/g (CD@ZP/HP) instead of 238.9 mg/g for ZP/HP. The loading activities were assessed based on the hypotheses of traditional kinetic and isotherm models, alongside the computational variables of the monolayer model with a single energetic site as an advanced isotherm model. The functionalized versions exhibit much greater loading efficacy compared to ZP/HP as a result of the increment in the density of the existing loading sites [Nm(5-Fu) = 78.85 mg/g (ZP/HP), 93.87 mg/g (CS@ZP/HP), and 117.8 mg/g (CD@ZP/HP)]. Furthermore, the loading energies of approximately 40 kJ/mol, together with the loading potential of each receptor (n > 1) and Gaussian energies of approximately 8 kJ/mol, indicate the physical entrapment of 5-Fu molecules according to a vertical orientation. The materials mentioned verify long-term and continuous release characteristics. Following the modification processes, this behavior became faster as both CS@ZP/HP and CD@ZP/HP displayed complete release within 120 h at pH 1.2. The kinetic studies and diffusing exponent (>0.45) indicate that release characteristics are controlled by both diffusion and erosion processes. These carriers also markedly increase the cytotoxicity of 5-Fu against HCT-116 colorectal cancer cell lines: 5-Fu-ZP/HP (3.2% cell viability), 5-Fu-CS@ZP/HP (1.12% cell viability), and 5-Fu-CD@ZP/HP (0.63% cell viability).
Collapse
Affiliation(s)
- May N. Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I. Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
3
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Characterization of chitosan- and β-cyclodextrin-modified forms of magnesium-doped hydroxyapatites as enhanced carriers for levofloxacin: loading, release, and anti-inflammatory properties. RSC Adv 2024; 14:16991-17007. [PMID: 38799215 PMCID: PMC11124724 DOI: 10.1039/d4ra02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
An advanced form of magnesium-rich hydroxyapatite (Mg·HAP) was modified with two types of biopolymers, namely chitosan (CH/Mg·HAP) and β-cyclodextrin (CD/Mg·HAP), producing two types of bio-composites. The synthesized materials were developed as enhanced carriers for levofloxacin to control its loading, release, and anti-inflammatory properties. The polymeric modification significantly improved the loading efficiency to 281.4 mg g-1 for CH/Mg·HAP and 332.4 mg g-1 for CD/Mg·HAP compared with 218.3 mg g-1 for Mg·HAP. The loading behaviors were determined using conventional kinetic and isotherm models and mathematical parameters of new equilibrium models (the monolayer model of one energy). The estimated density of effective loading sites (Nm (LVX) = 88.03 mg g-1 (Mg·HAP), 115.8 mg g-1 (CH/Mg·HAP), and 138.5 mg g-1 (CD/Mg·HAP)) illustrates the markedly higher loading performance of the modified forms of Mg·HAP. Moreover, the loading energies (<40 kJ mol-1) in conjunction with the capacity of each loading site (n > 1) and Gaussian energies (<8 kJ mol-1) signify the physical trapping of LVX molecules in vertical orientation. The addressed materials validate prolonged and continuous release behaviors. These behaviors accelerated after the modification procedures, as the complete release was identified after 160 h (CH/Mg·HAP) and 200 h (CD/Mg·HAP). The releasing behaviors are regulated by both diffusion and erosion mechanisms, according to the kinetic investigations and diffusion exponent analysis (>0.45). The entrapping of LVX into Mg·HAP induces its anti-inflammatory properties against the generation of cytokines (IL-6 and IL-8) in human bronchial epithelia cells (NL20), and this effect displays further enhancement after the integration of chitosan and β-cyclodextrin.
Collapse
Affiliation(s)
- May N Bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Sarah I Al Othman
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt +2001288447189
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef City Egypt
| |
Collapse
|
4
|
Sayed IR, Alfassam HE, El-Sayed MI, Abd El-Gaied IM, Allam AA, Abukhadra MR. Synthesis and characterization of chitosan hybridized zinc phosphate/hydroxyapatite core shell nanostructure and its potentiality as delivery system of oxaliplatin drug. Int J Biol Macromol 2024; 254:127734. [PMID: 37913876 DOI: 10.1016/j.ijbiomac.2023.127734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/17/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
An advanced form of zinc phosphate/hydroxyapatite nanorods with a core-shell structure (ZPh/HPANRs) was made and then hybridized with chitosan polymeric chains to make a safe biocomposite (CH@ZPh/HPANRs) that improves the delivery structure of traditional oxaliplatin (OXPN) chemotherapy during the treatment of colorectal cancer cells. The qualifications of CH@ZPh/HPANRs in comparison with ZPh/HPANRs as a carrier for OXPN were followed based on loading, release, and cytotoxicity. CH@ZPh/HPANRs composite exhibits a notably higher OXPN loading capacity (321.75 mg/g) than ZPh/HPANRs (127.2 mg/g). The OXPN encapsulation processes into CH@ZPh/HPANRs display the isotherm behavior of the Langmuir model (R2 = 0.99) and the kinetic assumptions of pseudo-first-order kinetics (R2 > 0.89). The steric studies reflect a strong increment in the quantities of the free sites after the chitosan hybridization steps (Nm = 34.6 mg/g) as compared to pure ZPh/HPANRs (Nm = 18.7 mg/g). Also, the capacity of each site was enhanced to be loaded by 10 OXPN molecules (n = 9.3) in a vertical orientation. The OXPN loading energy into CH@ZPh/HPANRs (<40 KJ/mol) reflects physical loading reactions involving van der Waals forces and hydrogen bonding. The OXPN release profiles of CH@ZPh/HPANRs exhibit slow and controlled properties for about 140 h at pH 7.4 and 80 h at pH 5.5. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CH@ZPh/HPANRs particles display a considerable cytotoxic effect on the HCT-116 cancer cells (9.53 % cell viability), and their OXPN-loaded product shows a strong cytotoxic effect (1.83 % cell viability).
Collapse
Affiliation(s)
- Islam R Sayed
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Mohamed I El-Sayed
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | | | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt.
| |
Collapse
|
5
|
Okasha AT, Abdel-Khalek AA, Rudayni HA, Al Zoubi W, Alfassam HE, Allam AA, Abukhadra MR. Synthesis and characterization of Mg-hydroxyapatite and its cellulose hybridized structure as enhanced bio-carrier of oxaliplatin drug; equilibrium and release kinetics. RSC Adv 2023; 13:30151-30167. [PMID: 37849691 PMCID: PMC10577681 DOI: 10.1039/d3ra04268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
An advanced form of magnesium-doped hydroxyapatite (Mg HAP) was synthesized and hybridized with cellulose fibers, producing a safe biocomposite (CF/Mg HAP) as an enhanced delivery structure of traditional oxaliplatin (OXPN) chemotherapy drug during the treatment stages of colorectal cancer. The qualifications of CF/Mg HAP as a carrier for OXPN were followed based on loading, release, and cytotoxicity as compared to Mg HAP. The CF/Mg HAP composite exhibits a notably higher OXPN encapsulation capacity (256.2 mg g-1) than the Mg HAP phase (148.9 mg g-1). The OXPN encapsulation process into CF/Mg HAP displays the isotherm behavior of the Langmuir model (R2 = 0.99) and the kinetic assumptions of pseudo-first-order kinetics (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the cellulose hybridization steps (Nm = 178.58 mg g-1) as compared to pure Mg HAP (Nm = 69.39 mg g-1). Also, the capacity of each site was enhanced to be loaded by 2 OXPN molecules (n = 1.43) in a vertical orientation. The OXPN encapsulation energy into CF/Mg HAP (<40 kJ mol-1) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The OXPN release profiles of CF/Mg HAP exhibit slow and controlled properties for about 100 h, either at pH 5.5 or pH 7.4. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CF/Mg HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (21.82% cell viability), and their OXPN-loaded product shows a strong cytotoxic effect (1.85% cell viability).
Collapse
Affiliation(s)
- Alaa T Okasha
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed A Abdel-Khalek
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Haifa E Alfassam
- Princess Nourah Bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
6
|
Abukhadra MR, Okasha AT, Al Othman SI, Alfassam HE, Alenazi NA, AlHammadi AA, Allam AA. Synthesis and Characterization of Mg-Hydroxyapatite and Its β-Cyclodextrin Composite as Enhanced Bio-Carrier of 5-Fluorouracil Drug; Equilibrium and Release Kinetics. ACS OMEGA 2023; 8:30247-30261. [PMID: 37636978 PMCID: PMC10448682 DOI: 10.1021/acsomega.3c02982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
An advanced form of magnesium-doped hydroxyapatite (Mg·HAP) was integrated in composite with β-cyclodextrin producing a safe biocomposite (β-CD/HAP) as an enhanced delivery structure of traditional 5-fluorouracil (5-FU) chemotherapy during the treatment stages of colorectal cancer cells. The qualifications of β-CD/HAP as a carrier for 5-FU were followed based on the loading, release, and cytotoxicity as compared to Mg·HAP. β-CD/HAP composite exhibits notably higher 5-FU encapsulation capacity (272.3 mg/g) than Mg·HAP phase (164.9 mg/g). The 5-FU encapsulation processes into β-CD/HAP display the isotherm behavior of the Freundlich model (R2 = 0.99) and kinetic assumptions of pseudo-first order kinetic (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the β-CD integration steps (Nm = 61.2 mg/g) as compared to pure Mg·HAP (Nm = 42.4 mg/g). Also, the capacity of each site was enhanced to be loaded by 5 of 5-FU molecules (n = 4.45) in a vertical orientation. The 5-FU encapsulation energy into β-CD/HAP (<40 kJ/mol) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The 5-FU release profiles of β-CD/HAP exhibit slow and controlled properties for about 80 h either in gastric fluid (pH 1.2) or in intestinal fluid (pH 7.4). The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and complex erosion/diffusion release mechanism. The free β-CD/HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (33.62% cell viability) and its 5-FU-loaded product shows a strong cytotoxic effect (2.91% cell viability).
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef City 62511, Egypt
| | - Alaa T. Okasha
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni Suef City 62514, Egypt
| | - Sarah I. Al Othman
- Princess
Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi
Arabia
| | - Haifa E. Alfassam
- Princess
Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi
Arabia
| | - Noof A. Alenazi
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali A. AlHammadi
- Chemical
Engineering Department, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Catalysis and Separations, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| |
Collapse
|
7
|
Abukhadra MR, Saad I, Al Othman SI, Alfassam HE, Allam AA. Insight into the synergetic, steric and energetic properties of zeolitization and cellulose fiber functionalization of diatomite during the adsorption of Cd(ii): advanced equilibrium studies. RSC Adv 2023; 13:23601-23618. [PMID: 37555098 PMCID: PMC10405048 DOI: 10.1039/d3ra03939k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
The adsorption potentiality of zeolitized diatomite (ZD) frustules and their cellulose hybridized (C/ZD) product for Cd(ii) ions was assessed in synergetic studies to investigate the impact of the modification processes. The adsorption properties were illustrated based on the steric and energetic parameters of the applied advanced equilibrium modeling (monolayer model of one energy). The cellulose hybridization process increased the adsorption properties of Cd(ii) significantly to 229.4 mg g-1 as compared to ZD (180.8 mg g-1) and raw diatomite (DA) (127.8 mg g-1) during the saturation state. The steric investigation suggested a notable increase in the quantities of the active sites after the zeolitization (Nm = 62.37 mg g-1) and cellulose functionalization (Nm = 98.46 mg g-1), which illustrates enhancement in the Cd(ii) uptake capacity of C/ZD. Moreover, each active site of C/ZD can absorb about 4 ions of Cd(ii) ZD, which occur in a vertical orientation. The energetic studies, including Gaussian energy (<8 kJ mol-1) and retention energy (<8 kJ mol-1), demonstrate the physical uptake of Cd(ii), which might involve cooperating van der Waals forces (4-10 kJ mol-1), hydrophobic bonds (5 kJ mol-1), dipole forces (2-29 kJ mol-1), and hydrogen bonding (<30 kJ mol-1) in addition to zeolitic ion exchange mechanisms (0.6-25 kJ mol-1). The behaviors and values of entropy, internal energy, and free enthalpy as the assessed thermodynamic functions validate the exothermic and spontaneous properties of the Cd(ii) retention by ZD and the C/ZD composite.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef Egypt
| | - Islam Saad
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
8
|
Alfassam HE, Ashraf MT, Al Othman SI, Al-Waili MA, Allam AA, Abukhadra MR. Characterization of cellulose-functionalized phillipsite biocomposite as an enhanced carrier of oxaliplatin drug during the treatment of colorectal cancer: loading, release, and cytotoxicity. RSC Adv 2023; 13:16327-16341. [PMID: 37266494 PMCID: PMC10231141 DOI: 10.1039/d3ra02243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Natural phillipsite (N.Ph) was hybridized with cellulose fibers to produce a safe biocomposite (CF/N.Ph) as an enhanced delivery structure of traditional oxaliplatin (OXPN) chemotherapy during the treatment stages of colorectal cancer cells. The requirements of CF/N.Ph as a carrier for OXPN were followed based on the loading, release, and cytotoxicity compared to N.Ph. CF/N.Ph composite exhibits a notably higher OXPN encapsulation capacity (311.03 mg g-1) than the N.Ph phase (79.6 mg g-1). The OXPN encapsulation processes into CF/N.Ph display the isotherm behavior of the Freundlich model (R2 = 0.99) and the kinetic assumptions of pseudo-first order kinetic (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the cellulose hybridization steps (Nm = 100.01 mg g-1) compared to pure N.Ph (Nm = 27.94 mg g-1). Additionally, the capacity of each site was enhanced to be loaded by 4 OXPN molecules (n = 3.11) compared to 3 by N.Ph (n = 2.85) in a vertical orientation. The OXPN encapsulation energy into CF/N.Ph (<40 kJ mol-1) reflects physical encapsulation reactions involving electrostatic attraction, van der Waals forces, and hydrogen bonding. The OXPN release profiles of CF/N.Ph exhibit slow and controlled properties for about 150 h either at pH 5.5 or at pH 7.4. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CF/N.Ph particles display a considerable cytotoxic effect on HCT-116 cancer cells (46.91% cell viability), and its OXPN-loaded product shows a strong cytotoxic effect (3.14% cell viability).
Collapse
Affiliation(s)
- Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Menna-Tullah Ashraf
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef City Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Maha A Al-Waili
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef City Egypt
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| |
Collapse
|
9
|
Alfassam HE, Ashraf MT, Al Othman SI, Al-Waili MA, Allam AA, Abukhadra MR. Synthesis and characterization of cellulose functionalized zeolitic diatomite as an enhanced carrier of oxaliplatin drug; loading, release, and cytotoxicity. Int J Biol Macromol 2023; 235:123825. [PMID: 36828091 DOI: 10.1016/j.ijbiomac.2023.123825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Natural diatomite frustules (D) were incorporated in zeolitization and cellulose functionalization processes to obtain zeolitized diatomite (ZD) and cellulose fibrous/zeolitized diatomite composite (CF/ZD). The modified products were assessed as potential carriers of oxaliplatin drug (OXPL) with enhanced properties. The prepared ZD (112.5 mg/g) and CF/ZD (268.3 mg/g) structures exhibit significantly enhanced encapsulation capacities as compared to raw diatomite (65.9 mg/g). The occurred encapsulation reactions follow the classic Pseudo-first order kinetic (R2 > 0.93) and traditional Langmuir isotherm (R2 = 0.99). The estimated effective encapsulation site density of CF/ZD is 104.8 mg/g which is a notably higher value than ZD (44.6 mg/g) and D (28.4 mg/g). Moreover, each effective site can be occupied with up to 3 molecules of OXPL molecules in vertical forms involving multi-molecular mechanisms. The encapsulation energy (<40 KJ/mol) suggested the predominant effects of the physical mechanisms during the encapsulation reactions. The release profiles of ZD as well as CF/ZD exhibit slow and controlled properties for about 100 h either at pH 5.5 or at pH 7.4. The release kinetic studies involving the obtained diffusion exponent values (>0.45) suggested non-Fickian transport and complex erosion/diffusion release mechanism. These structures exhibit enhanced cytotoxic effects on the HCT-116 cancer cell lines (D (18.78 % cell viability), ZD (9.76 % cell viability), and CF/ZD (3.16 % cell viability).
Collapse
Affiliation(s)
- Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Menna-Tullah Ashraf
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt; Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Maha A Al-Waili
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt.
| |
Collapse
|
10
|
Abukhadra MR, Saad I, Othman SI, Katowah DF, Ajarem JS, Alqarni SA, Allam AA, Al Zoubi Investigatio W, Gun Ko Supervisor Y. Characterization of Fe0@Chitosan/Cellulose Structure as Effective Green Adsorbent for Methyl Parathion, Malachite Green, and Levofloxacin Removal: Experimental and Theoretical Studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|