1
|
Kedves A, Yavuz Ç, Kedves O, Haspel H, Kónya Z. The response to shock loads of Ni-MOF and NiO NPs on aerobic granular sludge and algal-bacterial aerobic granular sludge. Heliyon 2024; 10:e40796. [PMID: 39720072 PMCID: PMC11667604 DOI: 10.1016/j.heliyon.2024.e40796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable. AB-AGS exhibited greater tolerance to nickel than AGS, likely due to its higher content of extracellular polymeric substances (EPSs), in which the algae were embedded, indicating a robust bacterial-algal symbiotic system. Conversely, NiO NPs had no adverse effects on bioreactor performance, likely due to their insolubility and integration into the sludge matrix. This research provides valuable insights into the potential future applications of AGS and AB-AGS technologies for treating wastewater contaminated with nickel and other heavy metals, highlighting the superior resilience of AB-AGS to nickel exposure.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Çağdaş Yavuz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
2
|
Khotchasanthong K, Chinchan K, Kongpatpanich K, Pinyo W, Kielar F, Dungkaew W, Sukwattanasinitt M, Laksee S, Chainok K. Construction of 2D zinc(II) MOFs with tricarboxylate and N-donor mixed ligands for multiresponsive luminescence sensors and CO 2 adsorption. Dalton Trans 2024; 53:18243-18257. [PMID: 39364617 DOI: 10.1039/d4dt01825g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The solvothermal reactions of ZnCl2·6H2O, benzene-1,3,5-tribenzoic acid (H3btb), and N-heterocyclic ancillary imidazole (Im) or aminopyrimidine (a mp) ligands led to the creation of two-dimensional (2D) zinc(II) based metal-organic frameworks (MOFs), (Me2NH2)2[Zn2(btb)2(Im)2]·2DMF·3MeOH (1) and (Me2NH2)2[Zn2(btb)2(amp)]·H2O·2DMF·MeOH (2). The btb3- ligands in 1 and 2 form an anionic 2D layered structure with a (63) honeycomb (hcb) topology by linking to Zn(II) centres through their carboxylate groups. The incorporation of N-heterocyclic auxiliary ligands Im and amp into the hcb nets resulted in the formation of a 2D hydrogen-bonded and covalently pillared bilayer structure featuring two-fold interpenetrating networks. Each of these networks consists of small channels that are occupied by Me2NH2 cations and solvent molecules. Both 1 and 2 emit blue luminescence emissions in the solid state at room temperature and exhibit a great selectivity and sensitivity for the detection of acetone and multiple heavy metal ions including Hg2+, Cu2+, Fe2+, Pb2+, Cr3+, and Fe3+ ions. At 1 bar, activated 1 and 2 demonstrate moderate capacities for adsorbing CO2 at room temperature, with a preference for CO2 over N2. Notably, at higher pressures (up to 20 bar), their activated samples 1 and 2 show a temperature-dependent enhancement of CO2 uptake while retaining good stability.
Collapse
Affiliation(s)
- Kenika Khotchasanthong
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Kunlanit Chinchan
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Kanokwan Kongpatpanich
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Waraporn Pinyo
- NSTDA Characterization and Testing Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 43100, Thailand
| | | | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, 26120, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Sendh J, Baruah JB. Sequential effects of two cations on the fluorescence emission of a coordination polymer with Zn 4O core in node. RSC Adv 2024; 14:31598-31606. [PMID: 39376515 PMCID: PMC11457270 DOI: 10.1039/d4ra06309k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Distinct changes in the fluorescence emissions of free ligand 5-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)isophthalic acid (H2NAPHISO) than a 2D-zinc-coordination polymer of it, caused by sequential interactions with different sets of binary cations were observed. The coordination polymer having unsymmetrical Zn4O core of tetranuclear zinc-node could be dispersed in dimethylformamide without its degradation. The coordination polymer had an emission peak at 435 nm (quantum yield = 0.082) which was selectively quenched by adding Fe2+ ions. Based on this quenching, the Fe2+ ions in aqueous solution could be detected with a detection limit 42.57 nM. The metal ions such as Li+, Na+, Cd2+, Hg2+, Al3+ did not interfere in the detection; but each of these ions together with Fe2+ ions showed characteristic shift of the emission spectra. The H2NAPHISO in dimethyl formamide was non-fluorescent, but showed emission at 452 nm upon addition of Cd2+ or Zn2+ ions. This new emission of H2NAPHISO caused by zinc or cadmium ions was not quenched by Fe2+ ions. Various cations had affected the emission of the H2NAPHISO with Zn2+ which was much different from the corresponding changes caused by the same ion on the emission of the coordination polymer. For example, the Mn2+ and Zn2+ ions together in a solution of the ligand showed a broad emission spectrum spreading over 380-450 nm, but ions Sn2+ and Zn2+ together had showed emission at a shorter wavelength (380 nm). These allowed to modulate the emission of the ligand by binary combination of metal ions.
Collapse
Affiliation(s)
- Jagajiban Sendh
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| | - Jubaraj B Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| |
Collapse
|
4
|
Bhosale MU, Gujja CS, Asiwal EP, Manjare ST, Pawar SD. Fluorescent MnO 2@DEHP Nanoprobe for Rapid and Selective Detection of Fe(III) ions. J Fluoresc 2024:10.1007/s10895-024-03848-w. [PMID: 39028448 DOI: 10.1007/s10895-024-03848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Particle extraction via the liquid-liquid interface (PELLI) method has been utilized to produce Di-(2-ethylhexyl) phosphate (DEHP) coated MnO2 fluorescent nanoprobe denoted as MnO2@DEHP for the selective detection of Fe3+ ions. The synthesized MnO2@DEHP nanoprobe was characterized by various instrumental techniques such as FT-IR, PXRD, TEM, EDAX, HRTEM, DLS, and XPS. Since the high concentration of Fe3+ in waste water leads to water pollution, which in turn affects the ecosystem, and causes severe health hazards. Therefore, accurate detection of Fe3+ ions in the aqueous systems is essential as they are involved in various chemical and biological processes in living things. Here, the synthesized MnO2@DEHP nanoprobe selectively detects Fe3+ ions in the presence of various metal ions in an aqueous media by fluorescence quenching (turn-off) mechanism. The limit of detection (LOD) of MnO2@DEHP nanoprobe for Fe3+ was found to be 0.49 µM. The test-strip method and real water sample analysis were also used to demonstrate the viability of MnO2@DEHP as a fluorescent nanoprobe to detect Fe3+ ions visually and in environment monitoring applications.
Collapse
Affiliation(s)
- Mayura U Bhosale
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| | | | - Ekta P Asiwal
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| | - Sudesh T Manjare
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| | - Suresh D Pawar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| |
Collapse
|
5
|
Ma YF, Liu XL, Lu XY, Zhang ML, Ren YX, Yang XG. Zn-coordination polymers for fluorescence sensing various contaminants in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123803. [PMID: 38159382 DOI: 10.1016/j.saa.2023.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Luminescent coordination polymers (LCPs) have garnered significant attention from researchers as promising materials for detecting contaminants. In this paper, three new LCPs ([Zn(tib)(opda)]n⋅H2O (1), [Zn3(tib)2(mpda)3]n⋅5H2O (2), [Zn (tib)(ppda)]n⋅H2O (3)) with different structures (LCP 1-3: 1D, 2D, 1D) using phenylenediacetic acid isomers and 1,3,5-tris (1-imidazolyl) benzene (tib) are synthesized. The specific surface areas (BET) of LCP 1-3 are 4 m2/g, 19 m2/g, and 13 m2/g respectively. LCP 1-3 exhibit excellent fluorescence properties and can serve as fluorescent probe for the detection of inorganic contaminants and organic contaminants. Due to the large BET of LCP 2, the detection limits for trace analytes surpass those of LCP 1 and 3. The detection limits of LCP 2 for Fe3+, nitrobenzene (NB), chloramphenicol (CAP), and pyrimethanil (PTH) are 8.3 nM, 0.016 μM, 0.19 μM, and 0.032 μM, respectively, and the fluorescence quenching rates are 98.6 %, 98.8 %, 92.3 %, and 98.8 %, respectively. These values outperform most reported in the literature. The quantum yields of LCP 1-3 are 11.84 %, 25.22 %, 22.00 % respectively. Real sample testing of LCP 1-3 reveals favorable performance, where spiked recoveries of LCP 2 for the detection of pyrimethanil in grape skins ranged from 99.62 % to 119.3 % with a relative standard deviation (RSD) of 0.627 % to 4.56 % (n = 3). The fluorescence quenching mechanism was attributed to a combination of photoelectron transfer (PET), resonance energy transfer (RET), and competitive absorption (CA). This study advances the application of LCPs in luminescence sensing and contributes to the expansion of novel materials for detecting environmental pollutants.
Collapse
Affiliation(s)
- Ya-Fei Ma
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Li Liu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xue-Ying Lu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Mei-Li Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| | - Yi-Xia Ren
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
6
|
Hua Y, Ahmadi Y, Kim KH. Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130422. [PMID: 36434918 DOI: 10.1016/j.jhazmat.2022.130422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Aluminum is a relatively inexpensive and abundant metal for the mass production of metal-organic frameworks (MOFs). Aluminum-based MOFs (Al-MOFs) have drawn a good deal of research interest due to their unique properties for diverse applications (e.g., excellent chemical and structural stability). This review has been organized to highlight the current progress achieved in the synthesis/functionalization of Al-MOF materials with the special emphasis on their sensing application, especially toward metal ion pollutants in the liquid phase. To learn more about the utility of Al-MOF-based sensing systems, their performances have been evaluated for diverse metallic components in reference to many other types of sensing systems (in terms of the key quality assurance (QA) criteria such as limit of detection (LOD)). Finally, the challenges and outlook for Al-MOF-based sensing systems are discussed to help expand their real-world applications.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
7
|
Kaur J, Kaur M, Kansal SK, Umar A, Algadi H. Highly fluorescent nickel based metal organic framework for enhanced sensing of Fe 3+ and Cr 2O 72- ions. CHEMOSPHERE 2023; 311:136832. [PMID: 36257400 DOI: 10.1016/j.chemosphere.2022.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal contamination has sparked widespread concern among the populace. The significant issues necessitate the creation of high-performance fluorescent pigments that can identify harmful elements in water. The present study deals with metal organic framework [MOF] based on nickel [Ni-BDC MOF]. The Ni-BDC MOF was prepared by facile solvothermal method using nickel nitrate hexahydrate and terephthalic acid ligand as precursors. The MOF was characterized by various techniques in order to examine the crystal, morphological, structural, composition, thermal and optical properties. The detailed characterizations revealed that the synthesized Ni-BDC MOF are well-crystalline with high purity and possessing 3D rhombohedral microcrystals with rough surface. The MOF demonstrate good luminescence performance and excellent water stability. According to the Stern Volmer plot, the tests set up under optimized conditions demonstrate a linear correlation between the fluorescence intensity and concentration of both ions, i.e. Fe3+, and Cr2O72- ions. The linear range and detection limit for Fe3+ and Cr2O72- were found to be 0-1.4 nM and 0.159 nM, and 0-1 nM and 0.120 nM, respectively. The mechanisms for the selective detection of cations and anions were also explored. The recyclability for the prepared MOF was checked up to five cycles which showed excellent stability with just a slight reduction in efficiency. The constructed sensor was also used to assess the presence of Fe3+ and Cr2O72- ions in actual water samples. The results of the different experiments revealed that the prepared MOF is a good material for detecting Fe3+ and Cr2O72- ions.
Collapse
Affiliation(s)
- Jasjot Kaur
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Manjot Kaur
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Hassan Algadi
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| |
Collapse
|