1
|
Babazadeh-Mamaqani M, Roghani-Mamaqani H, Rezaei M, Salami-Kalajahi M. Photo-induced time-dependent controllable wettability of dual-responsive multi-functional electrospun MXene/polymer fibers. J Colloid Interface Sci 2025; 678:1048-1063. [PMID: 39332123 DOI: 10.1016/j.jcis.2024.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Switchable wettability potential in smart fibers is of paramount importance in various applications. Light-induced controllable changes in surface wettability have a significant role in this area. Herein, smart waterborne homopolymer, functional copolymer with different polarity and flexibility, and multi-functional terpolymer particles containing a time-dependent dual-responsive acrylated spiropyran, as a polymerizable monomer, were successfully synthesized through eco-friendly single-step emulsifier-free emulsion polymerization. Presence of 10 wt% of butyl acrylate and dimethylaminoethyl methacrylate relative to methylmethacrylate as functional comonomers decreased the Tg of the samples almost 20 ℃ and increased their polarity. The optical properties of the particles were investigated, and the UV-vis and fluorescence spectroscopy results showed that not only polarity and flexibility of the polymer chains may have a positive effect on improving the optical properties, but also the simultaneous presence of functional groups has a synergistic effect. The smart polymer particles with flexibility and polarity features exhibited higher absorption and emission compared to other samples. Inspired by these findings, multi-functional smart polymer fibers were prepared using the electrospinning method. The smart multi-functional electrospun fibers containing few-layer Ti3C2 MXenes were synthesized to improve the fibers' properties and change the surface wettability due to the hydrophilic functional groups of MXene. Field-emission scanning electron microscopy images displayed the successful preparation of few-layer MXenes. Smooth and bead-free fibers with bright red fluorescence emission under UV irradiation were shown using fluorescence microscopy. The study on the surface wettability of fibers revealed that UV and visible light irradiation induced reversible time-dependent changes in the wettability of the smart multi-functional MXene/polymer electrospun fibers from hydrophobic to hydrophilic, reaching a water contact angle of 10° from an initial water contact angle of 100° under UV light and also changing to superhydrophilic state with passing time. Upon visible light exposure, the fibers returned to their original state. Furthermore, the fibers demonstrated a high stability over five alternating cycles of UV and visible light irradiation. This study shows that the fabrication of time-dependent smart fibers, utilizing the flexibility and polarity in the presence of MXenes, significantly improves and controls surface wettability changes. The outstanding dynamically photo-switchable wettability of these fibers may offer exciting opportunities in various applications, especially in the separation of oil from water contaminants.
Collapse
Affiliation(s)
- Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mostafa Rezaei
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
2
|
Kulinich AV, Ishchenko AA. Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase. Chem Rev 2024. [PMID: 39423353 DOI: 10.1021/acs.chemrev.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure-property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D-π-A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| |
Collapse
|
3
|
Zhou B, Govyadinov A, Kornilovitch P, Remcho VT. Development of Spiropyran Immobilization and Characterization Protocols for Reversible Photopatterning of SiO 2 Surfaces. ACS OMEGA 2024; 9:29401-29409. [PMID: 39005810 PMCID: PMC11238298 DOI: 10.1021/acsomega.4c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Spiropyran is a dynamic organic compound that is distinguished by its reversible conversion between two forms: the colorless closed spiropyran (SP) form and the purple open merocyanine (MC) form. Typically triggered by UV light and reversed by visible light, spiropyran-functionalized surfaces offer reversible conversion in properties including color, polarity, reactivity, and fluorescence, making them applicable to diverse applications in chemical sensors, biosensors, drug delivery, and heavy metal extraction. While spiropyran has been successfully incorporated into various material platforms with SiO2 surfaces, its application on flat surfaces has been limited due to surface area constraints and a lack of standardized evaluation methods, which largely depend on the integration approach and substrate type used. In this study, we systematically review the existing literature and categorize integration methods and substrate types first and then report on our experimental work, in which we developed a streamlined three-step immobilization protocol, which includes surface activation, amination with (3-aminopropyl) triethoxysilane (APTES), and subsequent functionalization with carboxylic spiropyran (SP-COOH). Using SiO2 surfaces as a demonstration, we have also established a robust characterization protocol, consisting of contact angle measurements, X-ray photoelectron spectroscopy (XPS), ellipsometry, and fluorometric analysis. Our results evaluate the newly developed immobilization protocol, demonstrating effective activation and optimal amination using a 2% APTES solution, achieved in 5 min at room temperature. Fluorescence imaging provided clear contrast between the SP and the MC forms. Furthermore, we discuss limitations in the surface density of functional groups and steric hindrance and propose future improvements. Our work not only underscores the versatility of spiropyran in surface patterning but also provides optimized protocols for its immobilization and characterization on SiO2 surfaces, which may be adapted for use on other substrates. These advancements lay the groundwork for on-chip sensing technologies and other applications.
Collapse
Affiliation(s)
- Bokun Zhou
- Department
of Chemistry, College of Science, Oregon
State University, Corvallis, Oregon 97331, United States
- Materials
Science Program, College of Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | | | | | - Vincent T. Remcho
- Department
of Chemistry, College of Science, Oregon
State University, Corvallis, Oregon 97331, United States
- Materials
Science Program, College of Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
4
|
Hernández-Ortiz OJ, Castro-Monter D, Rodríguez Lugo V, Moggio I, Arias E, Reyes-Valderrama MI, Veloz-Rodríguez MA, Vázquez-García RA. Synthesis and Study of the Optical Properties of a Conjugated Polymer with Configurational Isomerism for Optoelectronics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2908. [PMID: 37049202 PMCID: PMC10096395 DOI: 10.3390/ma16072908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
A π-conjugated polymer (PBQT) containing bis-(2-ethylhexyloxy)-benzo [1,2-b'] bithiophene (BDT) units alternated with a quinoline-vinylene trimer was obtained by the Stille reaction. The chemical structure of the polymer was verified by nuclear magnetic resonance (1H NMR), Fourier transform infrared (FT-IR), and mass spectroscopy (MALDI-TOF). The intrinsic photophysical properties of the solution were evaluated by absorption and (static and dynamic) fluorescence. The polymer PBQT exhibits photochromism with a change in absorption from blue (449 nm) to burgundy (545 nm) and a change in fluorescence emission from green (513 nm) to orange (605 nm) due to conformational photoisomerization from the trans to the cis isomer, which was supported by theoretical calculations DFT and TD-DFT. This optical response can be used in optical sensors, security elements, or optical switches. Furthermore, the polymer forms spin-coated films with absorption properties that cover the entire visible range, with a maximum near the solar emission maximum. The frontier molecular orbitals, HOMO and LUMO, were calculated by cyclic voltammetry, and values of -5.29 eV and -3.69, respectively, and a bandgap of 1.6 eV were obtained, making this material a semiconductor with a good energetic match. These properties could suggest its use in photovoltaic applications.
Collapse
Affiliation(s)
- Oscar Javier Hernández-Ortiz
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
- Laboratorio de Química Supramolecular y Nanociencias de la Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México 07340, Ciudad de México, Mexico
| | - Damaris Castro-Monter
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Ventura Rodríguez Lugo
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Saltillo 25294, Coahuila, Mexico
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Saltillo 25294, Coahuila, Mexico
| | - María Isabel Reyes-Valderrama
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - María Aurora Veloz-Rodríguez
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Rosa Angeles Vázquez-García
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| |
Collapse
|
5
|
Alidaei-Sharif H, Roghani-Mamaqani H, Babazadeh-Mamaqani M, Sahandi-Zangabad K, Abdollahi A, Salami-Kalajahi M. Photochromic polymer nanoparticles as highly efficient anticounterfeiting nanoinks for development of photo-switchable encoded tags. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Colorimetric/fluorometric optical chemosensors based on oxazolidine for highly selective detection of Fe3+ and Ag+ in aqueous media: Development of ionochromic security papers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Alidaei-Sharif H, Roghani-Mamaqani H, Babazadeh-Mamaqani M, Sahandi-Zangabad K, Salami-Kalajahi M. Photoluminescent Polymer Nanoparticles Based on Oxazolidine Derivatives for Authentication and Security Marking of Confidential Notes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13782-13792. [PMID: 36318093 DOI: 10.1021/acs.langmuir.2c01947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colloidal materials have widely been used to develop innovative anticounterfeiting nanoinks for information encryption. Latex nanoparticles based on methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) bearing hydroxyl functional groups were synthesized via semicontinuous miniemulsion polymerization. The size determination of the nanoparticles and microscopic results showed mostly spherical nanoparticles with a narrow size distribution and a mean size of about 80 nm. Two oxazolidine derivatives were physically doped at the surface of the nanoparticles to prepare photoluminescent polymer nanoparticles. Hydroxyl functional groups at the surface of the nanoparticles led to their hydrogen bonding interactions with the doped luminescent compounds. Optical analysis of the photoluminescent nanoparticles displayed different fluorescence emission and UV-vis absorbance intensities based on the amount of polar groups located at the surface of colloidal nanoparticles. Reducing the particle size to below 100 nm along with increasing the surface area can assist the decrease of the light reflectance and improvement of the latex nanoparticles' efficiency in the anticounterfeiting industry. This preparation methodology can efficiently provide remarkable photoreversible anticounterfeiting nanoinks used in different applications, such as print marking, security encoded tags, labeling, probing, and handwriting.
Collapse
Affiliation(s)
- Hossein Alidaei-Sharif
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| | - Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Keyvan Sahandi-Zangabad
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| |
Collapse
|
8
|
Razavi B, Roghani-Mamaqani H, Salami-Kalajahi M. Stimuli-Responsive Dendritic Macromolecules for Optical Detection of Metal Ions and Acidic Vapors by the Photoinduced Electron Transfer Mechanism: Paper-Based Indicator for Food Spoilage Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41433-41446. [PMID: 36050933 DOI: 10.1021/acsami.2c12144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visual detection of analytes has been a significant challenge in the design and development of optical chemosensors. Sensing of analytes in aqueous solution by organic molecules has encountered some issues, such as poor water solubility and quenching of optical properties. In this study, a new category of smart dendritic macromolecules was designed and synthesized by functionalization of the poly(amidoamine) (PAMAM) dendrimer with spiropyran molecules to afford a photoluminescent dendritic structure (SP-PAMAM). Smart optical sensors were prepared by physical incorporation of four different oxazolidine derivatives containing hydroxyl and nitro substituted groups into the SP-PAMAM structure. Investigation of optical properties demonstrated photoinduced electron transfer (PET) between the spiropyran end group of SP-PAMAM and oxazolidine derivatives (in a concentration of about 0.0002 M), which can result in quenching of fluorescence emission of spiropyran photoswitch in the form of merocyanine (MC). Treatment of the oxazolidine-doped SP-PAMAM samples with metal ions resulted in changes in the PET mechanism (switching on or off), as observed in the case of Fe3+, Pb2+, Cu2+, Zn2+, Cd2+, Co2+, and Ni2+ by different oxazolidine derivatives through various mechanisms (increase or decrease of fluorescence emission). These smart photoluminescent dendritic macromolecules have potential applications for photodetection of metal ions in aqueous media as optical chemosensors. In addition, the smart macromolecules displayed disconnection of PET between MC and oxazolidine and also showed red fluorescence emission under acidic conditions (pH 1-5). It is due to the protonation of the MC to MCH form and demonstrates a remarkable red shift in fluorescence spectra. The pH-responsivity of smart macromolecules was used for designing a paper-based pH indicator for visual detection of spoilage in the food industry, especially in the case of milk. The prepared papers applied on cap of the milk bottles did not show any fluorescence emission in the case of fresh milk; however, a red fluorescence emission was observed after milk spoilage as a result of adsorption of acidic volatile components generated by bacterial degradation and oxidation process on the paper surface. The reported smart papers can serve as optical portable pH indicators for timely detection of spoilage in food materials, which are usable in food packaging as smart indicator tags.
Collapse
Affiliation(s)
- Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| |
Collapse
|