1
|
Wei Z, Zhang H, Zhang F, Xia J, Meng Q, Huang H, Wang Z. Construction of self-enhanced luminescence probes based on Ti 3C 2 reducibility for ultrasensitive PNK analysis. Biosens Bioelectron 2024; 256:116236. [PMID: 38608494 DOI: 10.1016/j.bios.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Au nano-clusters (Au NCs) were promising electrochemiluminescence (ECL) nano-materials. However, the small size of Au NCs presented a challenge in terms of their immobilization during the construction of an ECL biosensing platform. This limitation significantly hindered the wider application of Au NCs in the ECL field. In this work, we successfully used the reducibility of Ti3C2 to fabricate in situ a self-enhanced nano-probe Ti3C2-TiO2-Au NCs. The strategy of in situ generation not only improved the immobilization of Au NCs on the probe but also eliminated the requirement of adding reducing agents during preparation. In addition, in situ generated TiO2 could serve as a co-reaction accelerator, shortening the electron transfer distance between S2O82- and Au NCs, thereby improving the utilization of intermediates and enhancing the ECL response of Au NCs. The constructed ECL sensing platform could achieve sensitive detection of polynucleotide kinase (PNK). At the same time, the 5'-end phosphate group of DNA phosphorylation could chelate with a large amount of Ti on the surface of Ti3C2, thereby achieving the goal of specific detection of PNK. The sensor based on self-enhanced ECL probes had a broad dynamic range spanning for PNK detection from 10.0 to 1.0 × 107 μU mL-1, with a limit of detection of 1.6 μU mL-1. Moreover, the ECL sensor showed satisfactory detection performance in HeLa cell lysate and serum. This study not only provided insights for addressing the issue of ECL luminescence efficiency in Au NCs but also presented novel concepts for ECL self-enhancement strategies.
Collapse
Affiliation(s)
- Zhihao Wei
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Huixin Zhang
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Hongjie Huang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Qin J, Li J, Zeng H, Du F, Tang D, Tang J. Bifunctional TiO 2 Nanoflower-Induced H 4TCBPE Aggregation Enhanced Electrochemiluminescence for an Ultrasensitive Assay of Organophosphorus. Anal Chem 2023; 95:17903-17911. [PMID: 37972093 DOI: 10.1021/acs.analchem.3c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, the aggregation-induced emission ligand 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (H4TCBPE) was rigidified in the Ti-O network to form novel electrochemiluminescence (ECL) emitter H4TCBPE-TiO2 nanospheres, which acted as an effective ECL emitter to construct an "on-off" ECL biosensor for ultrasensitive detection of malathion (Mal). H4TCBPE-TiO2 exhibited excellent ECL responses due to the Ti-O network that can restrict the intramolecular free motions within H4TCBPE and then reduce the nonradiative relaxation. Moreover, TiO2 can act as an ECL co-reaction accelerator to promote the generation of sulfate radical anion (SO4•-), which interacts with H4TCBPE in the Ti-O network to produce enhanced ECL response. In the presence of Mal, numerous ligated probes (probe 1 to probe 2, P1-P2) were formed and released by copper-free click nucleic acid ligation reaction, which then hybridized with hairpin probe 1 (H1)-modified H4TCBPE-TiO2-based electrode surface. The P1-P2 probes can initiate the target-assisted terminal deoxynucleoside transferase (TdTase) extended reaction to produce long tails of deoxyadenine with abundant biotin, which can load numerous streptavidin-functionalized ferrocenedicarboxylic acid polymer (SA-PFc), causing quenching of the ECL signal. Thus, the ultrasensitive ECL biosensor based on H4TCBPE-TiO2 ECL emitter and click chemistry-actuated TdTase amplification strategy presents a desirable range from 0.001 to 100 ng/mL and a detection limit low to 9.9 fg/mL. Overall, this work has paved an avenue for the development of novel ECL emitters, which has opened up new prospects for ECL biosensing.
Collapse
Affiliation(s)
- Jiao Qin
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Haisen Zeng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Fan Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
3
|
Zhang H, Zhou X, Zhang F, Xia J, Wang Z. Ultrasound-pretreatment combined with Ti 3C 2-TiO 2-AuNPs enhancing the electrogenerated chemiluminescence of the air-saturated luminol for exosomes detection. ULTRASONICS SONOCHEMISTRY 2023; 94:106330. [PMID: 36805412 PMCID: PMC9969320 DOI: 10.1016/j.ultsonch.2023.106330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
It is still a great challenge to develop effective strategies to improve the low electrogenerated chemiluminescence (ECL) of air-saturated luminol. Herein, the synergistic effects of Ti3C2-TiO2-AuNPs nano hybrid and high-intensity focused ultrasound pretreatment (ultrasound-pretreatment) were used to significantly improve the ECL emission of the air-saturated luminol, and the mechanism was proposed. The ultrasound-pretreatment as a green method with the cavitation effect could form O2-• and H2O2 in situ as an initiator. TiO2 and Au nanoparticles (AuNPs) were in situ decorated on the Ti3C2 surface to form Ti3C2-TiO2-AuNPs, and it was proved as a highly efficient booster which could catalyze and aggregate H2O2 to the O2-•. The utilization rate of intermediates has been greatly improved. Exosomes as model targets can be sensitively detected by the ECL sensor. The detection limit was 195 particles μL-1. The detection results of exosomes in actual samples are satisfactory. We believe that the ultrasound-pretreatment strategy could be extended to the sensitive detection in the biological sample.
Collapse
Affiliation(s)
- Huixin Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Centre of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Centre of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Centre of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Centre of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Centre of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
4
|
Gong Z, Shao X, Luo J, Sun X, Ma H, Wu D, Fan D, Li Y, Wei Q, Ju H. Cu 2O@PdAg-quenched CdS@CeO 2 heterostructure electrochemiluminescence immunosensor for determination of prostate-specific antigen. Mikrochim Acta 2023; 190:59. [PMID: 36656362 DOI: 10.1007/s00604-023-05635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023]
Abstract
Based on the resonance energy transfer between CdS@CeO2 and Cu2O@PdAg, a quenching immunosensor for sensitive detection of prostate specific antigen (PSA) was constructed. The CdS@CeO2 heterostructure was obtained by in situ growth of CeO2 particles on the surface of CdS nanorods, and stable cathodic ECL emission was achieved using K2S2O8 as coreactant. Cu2O@PdAg was composed of Cu2O with tetradecahedral structure and bimetallic PdAg nanospheres and has a UV-V is absorption range between 600 and 800 nm. It overlaps with the ECL emission spectrum of CdS@CeO2, realizing the effective quenching of the ECL signal, which provides feasibility for subsequent practical application. The immunosensor exhibited good linearity in the concentration range 10 fg·mL-1 ~ 100 ng·mL-1, with a detection limit of 5.6 fg·mL-1. In sample analysis, the recoveries were 99.8-101%, and the relative standard deviation (RSD) was 0.85-1.6% showing great potential and development value for the sensitive detection of prostate cancer.
Collapse
Affiliation(s)
- Zhengxing Gong
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xinrong Shao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jing Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China. .,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|