1
|
Dewey HM, Lamb A, Budhathoki-Uprety J. Recent advances on applications of single-walled carbon nanotubes as cutting-edge optical nanosensors for biosensing technologies. NANOSCALE 2024; 16:16344-16375. [PMID: 39157856 DOI: 10.1039/d4nr01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) possess outstanding photophysical properties which has garnered interest towards utilizing these materials for biosensing and imaging applications. The near-infrared (NIR) fluorescence within the tissue transparent region along with their photostability and sizes in the nanoscale make SWCNTs valued candidates for the development of optical sensors. In this review, we discuss recent advances in the development and the applications of SWCNT-based nano-biosensors. An overview of SWCNT's structural and photophysical properties, sensor development, and sensing mechanisms are described. Examples of SWCNT-based optical nanosensors for detection of disease biomarkers, pathogens (bacteria and viruses), plant stressors, and environmental contaminants including heavy metals and disinfectants are provided. Molecular detection in biofluids, in vitro, and in vivo (small animal models and plants) are highlighted, and sensor integration into portable substrates for implantable and wearable sensing devices has been discussed. Recent advancements, which include high throughput assays and the use of machine learning models to predict more sensitive and robust sensing outcomes are discussed. Current limitations and future perspectives on translation of SWCNT optical probes into clinical practices have been provided.
Collapse
Affiliation(s)
- Hannah M Dewey
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ashley Lamb
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
2
|
Shiraki T, Niidome Y, Roy A, Berggren M, Simon DT, Stavrinidou E, Méhes G. Single-walled Carbon Nanotubes Wrapped with Charged Polysaccharides Enhance Extracellular Electron Transfer. ACS APPLIED BIO MATERIALS 2024; 7:5651-5661. [PMID: 39077871 PMCID: PMC11337164 DOI: 10.1021/acsabm.4c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/31/2024]
Abstract
Microbial electrochemical systems (MESs) rely on the microbes' ability to transfer charges from their anaerobic respiratory processes to electrodes through extracellular electron transfer (EET). To increase the generally low output signal in devices, advanced bioelectrical interfaces tend to augment this problem by attaching conducting nanoparticles, such as positively charged multiwalled carbon nanotubes (CNTs), to the base carbon electrode to electrostatically attract the negatively charged bacterial cell membrane. On the other hand, some reports point to the importance of the magnitude of the surface charge of functionalized single-walled CNTs (SWCNTs) as well as the size of functional groups for interaction with the cell membrane, rather than their polarity. To shed light on these phenomena, in this study, we prepared and characterized well-solubilized aqueous dispersions of SWCNTs functionalized by either positively or negatively charged cellulose-derivative polymers, as well as with positively charged or neutral small molecular surfactants, and tested the electrochemical performance of Shewanella oneidensis MR-1 in MESs in the presence of these functionalized SWCNTs. By simple injection into the MESs, the positively charged polymeric SWCNTs attached to the base carbon felt (CF) electrode, and as fluorescence microscopy revealed, allowed bacteria to attach to these structures. As a result, EET currents continuously increased over several days of monitoring, without bacterial growth in the electrolyte. Negatively charged polymeric SWCNTs also resulted in continuously increasing EET currents and a large number of bacteria on CF, although SWCNTs did not attach to CF. In contrast, SWCNTs functionalized by small-sized surfactants led to a decrease in both currents and the amount of bacteria in the solution, presumably due to the detachment of surfactants from SWCNTs and their detrimental interaction with cells. We expect our results will help researchers in designing materials for smart bioelectrical interfaces for low-scale microbial energy harvesting, sensing, and energy conversion applications.
Collapse
Affiliation(s)
- Tomohiro Shiraki
- Department
of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Niidome
- Department
of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Arghyamalya Roy
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping 601 74, Sweden
| | - Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping 601 74, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping 601 74, Sweden
| | - Daniel T. Simon
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping 601 74, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping 601 74, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping 601 74, Sweden
| | - Gábor Méhes
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping 601 74, Sweden
- Graduate
School of Information, Production and Systems, Waseda University, Hibikino
2-7, Wakamatsu, Kitakyushu 808-0135, Japan
| |
Collapse
|
3
|
Kim M, McCann JJ, Fortner J, Randall E, Chen C, Chen Y, Yaari Z, Wang Y, Koder RL, Heller DA. Quantum Defect Sensitization via Phase-Changing Supercharged Antibody Fragments. J Am Chem Soc 2024; 146:12454-12462. [PMID: 38687180 PMCID: PMC11498269 DOI: 10.1021/jacs.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. McCann
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ewelina Randall
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yu Chen
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Zvi Yaari
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ronald L. Koder
- Department of Physics, City College of New York, New York, NY 10031, USA
- Graduate Programs of Physics, Biology, Chemistry, and Biochemistry, The Graduate Center of City College of New York, New York, NY 10016, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
4
|
Ding Y, Xu Q, Chai Z, Wu S, Xu W, Wang J, Zhou J, Luo Z, Liu Y, Xie C, Lu L, Lu W. All-stage targeted red blood cell membrane-coated docetaxel nanocrystals for glioma treatment. J Control Release 2024; 369:325-334. [PMID: 38565395 DOI: 10.1016/j.jconrel.2024.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Challenges for glioma treatment with nanomedicines include physio-anatomical barriers (the blood-brain barrier and blood-brain tumor barrier), low drug loading capacity, and limited circulation time. Here, a red blood cell membrane-coated docetaxel drug nanocrystal (pV-RBCm-NC(DTX)), modified with pHA-VAP (pV) for all-stage targeting of glioma, was designed. The NC(DTX) core exhibited a high drug loading capacity but low in vivo stability, and the RBCm coating significantly enhanced the stability and prolonged in vivo circulation. Moreover, the Y-shaped targeting ligand pV was modified by a mild avidin-biotin interaction, which endowed RBCm-NC(DTX) with superior barrier-crossing ability and therapeutic efficacy. The integration of nanocrystal technology, cell membrane coating, and the avidin-biotin insertion method into this active targeting biomimetic formulation represents a promising drug delivery strategy for glioma.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zhilan Chai
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd., Shanghai, 201314, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd., Shanghai, 201314, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
5
|
Kitamura M, Umemura K. Hybridization of papain molecules and DNA-wrapped single-walled carbon nanotubes evaluated by atomic force microscopy in fluids. Sci Rep 2023; 13:4833. [PMID: 36964258 PMCID: PMC10039081 DOI: 10.1038/s41598-023-31927-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
Although various conjugates of single-walled carbon nanotubes (SWNTs) and biomolecules, such as nanobiosensors and nanobiodevices, have been reported, the conjugation of papain and SWNTs have not been reported because of the formation of unexpected aggregates. In this study, atomic force microscopy (AFM) in liquid was used to investigate the interactions between papain and DNA-wrapped SWNTs (DNA-SWNTs) at two different pH values (pH 3.0 and 10.5). The direct AFM observation of the mixture of papain and DNA-SWNTs confirmed the aggregation of papain molecules with DNA-SWNTs in the buffer solutions. The numerous and non-uniform adsorption of papain molecules onto DNA-SWNTs was more pronounced at pH 3.0 than that at pH 10.5. Furthermore, thick conjugates appeared when papain and DNA-SWNTs were simultaneously mixed. The near-infrared photoluminescence spectra of the SWNTs drastically changed when the papain molecules were injected into the DNA-SWNT suspension at pH 3.0. Thus, the regulation of electrostatic interactions is a key aspect in preparing optimal conjugates of papain and DNA-SWNTs. Furthermore, although previous papers reported AFM images of dried samples, this study demonstrates the potential of AFM in liquid in evaluating individual bioconjugates of SWNTs.
Collapse
Affiliation(s)
- Masaki Kitamura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, 1628601, Japan.
| | - Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, 1628601, Japan
| |
Collapse
|