1
|
Kautu A, Sharma S, Singh R, Negi SS, Singh N, Swain N, Kumar V, Kumar N, Gupta P, Bhatia D, Joshi KB. Metallopeptide nanoreservoirs for concurrent imaging and detoxification of lead (Pb) from human retinal pigment epithelial (hRPE1) cells. NANOSCALE 2024; 16:14940-14952. [PMID: 39046356 DOI: 10.1039/d4nr02236j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inspired by natural metallopeptides, our work focuses on engineering self-assembling nanostructures of C2-symmetric metallopeptide conjugates (MPC) from a pyridine-bis-tripeptide bioprobe that uniquely detects lead (Pb2+) ions by emitting a fluorescence signal at 450 nm, which is further intensified in the presence of DAPI (λem = 458 nm), enhancing the bioimaging quality. This study enables precise lead quantification by modulating the ionic conformation and morphology. Experimental and theoretical insights elucidate the nanostructure formation mechanism, laying the groundwork for materials encapsulation and advancing lead detoxification. Our proof-of-principle experiment, demonstrating actin filament recovery in lead-treated cells, signifies therapeutic potential for intracellular lead aggregation and introduces novel avenues in biotechnological applications within biomaterials science.
Collapse
Affiliation(s)
- Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Ramesh Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Saurabh Singh Negi
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Narendra Singh
- Indian Institute of Technology Kanpur, U.P., 208016, India
| | - Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Vikas Kumar
- Department of Chemistry, Government College Khimlasha, M.P., India
| | - Nikunj Kumar
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Puneet Gupta
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
2
|
Zhang Y, Liu J, Ge Z, Ou C, Wei J, Liu H, Wei Y. The binding effects and mechanisms of dissolved organic matter (DOM) on the fate of mercury in sludge anaerobic digestion combined with thermal hydrolysis. WATER RESEARCH 2024; 259:121845. [PMID: 38838483 DOI: 10.1016/j.watres.2024.121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Dissolved organic matter (DOM) plays an important role in regulating the fate of mercury (Hg), e.g., mobility, bioavailability, and toxicity. Clarifying the role of DOM in binding Hg in the treatment processes of sewage sludge is important for relieving Hg contamination risks in land applications. However, the impacts of DOM on Hg binding in sewage sludge are still unclear. In this study, we investigated the evolution of Hg and its speciation in full-scale sludge anaerobic digestion (AD) with thermal hydrolysis. The role of DOM in binding Hg(II) was further analyzed. The results showed that AD with thermal hydrolysis led to an increase in the Hg content in the sludge (from 3.72 ± 0.47 mg/kg to 10.75 ± 0.16 mg/kg) but a decrease in Hg mobility (the mercury sulfide fraction increased from 60.56 % to 79.78 %). Further adsorption experiments revealed that at equivalent DOM concentrations, DOM with a low molecular weight (MW<1 kDa) in activated sludge, DOM with a medium molecular weight (1 kDa 5 kDa) in both anaerobically digested sludge and conditioned sludge showed high binding amounts of Hg(II), with 1372.54, 535.28, 942.09 and 801.51 mg Hg/g DOM, respectively. Parallel factor analysis (PARAFAC) and fluorescence quotient (FQ) results showed that tryptophan-like and tyrosine-like substances had high binding affinities for Hg(II). Furthermore, X-ray photoelectron spectroscopy (XPS) indicated that the reduced organic sulfur contained in the DOM was potentially bound to Hg through the interactions of Hg-S and Hg-O. These results indicated that DOM may play special roles in regulating Hg speciation. The association between DOM and Hg(II), such as the significant positive correlation (p < 0.05) between the dissolution rate of Hg(II) and release of tryptophan-like substances during thermal hydrolysis, suggested the potential way for removing Hg from sludge.
Collapse
Affiliation(s)
- Yixin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jibao Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zheng Ge
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong, 222100, China
| | - Jinyi Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Kesharwani K, Kautu A, Sharma S, Singh R, Kumar V, Tripathi SK, Shukla P, Joshi KB. Short peptide amphiphile nanostructures facilitate sunlight-induced nanowelding of gold nanosheets. Chem Commun (Camb) 2022; 58:13815-13818. [PMID: 36444804 DOI: 10.1039/d2cc05392f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An effortless thermoplasmonic welding of multi-shaped gold nanosheets is achieved by ordinary and simple sunlight irradiation. A light-matter interaction occurred via the nanogaps of smaller nanosheets, leading to the enhancement of the electromagnetic field and thus effectively concentrating the heat at the welding point. The sPA peptide nanostructure facilitates the nanowelding of small caged gold nanostructures.
Collapse
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India. .,Indian Institute of Technology Gandhinagar (IITGN), India
| | - Vikas Kumar
- Department of Chemistry, IISc, Bengaluru, Karnataka, India
| | - Satyendra Kumar Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Prashant Shukla
- Department of Physics, School of Physical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
4
|
Kesharwani K, Singh R, Tripathi SK, Kaul G, Akhir A, Saxena D, Kumar V, Mishra NK, Chopra S, Joshi KB. Antimicrobial Activity of Silver Nanoparticles Loaded Biomimetic Isomeric Short Lipopeptide Nanostructures. ChemistrySelect 2022. [DOI: 10.1002/slct.202202234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry School of Chemical Science and Technology Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Ramesh Singh
- Department of Chemistry School of Chemical Science and Technology Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Satyendra Kumar Tripathi
- Department of Chemistry School of Chemical Science and Technology Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Grace Kaul
- Department of Microbiology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Abdul Akhir
- Department of Microbiology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
| | - Deepanshi Saxena
- Department of Microbiology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
| | - Vikas Kumar
- Department of Chemistry Indian Institute of Science Bengaluru Karnataka India
| | | | - Sidharth Chopra
- Department of Microbiology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Khashti Ballabh Joshi
- Department of Chemistry School of Chemical Science and Technology Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| |
Collapse
|