1
|
Cheng M, Cao N, Wang Z, Wang K, Pu T, Li Y, Sun T, Yue X, Ni W, Dai W, He Y, Shi Y, Zhang P, Zhu Y, Xie P. Strain-Induced Self-Assembly at Interface of Two-Dimensional Heterostructures Boosts CO 2 Reduction to Methanol by H 2O. ACS NANO 2024; 18:10582-10595. [PMID: 38564712 DOI: 10.1021/acsnano.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CO2 conversion with pure H2O into CH3OH and O2 driven by solar energy can supply fuels and life-essential substances for extraterrestrial exploration. However, the effective production of CH3OH is significantly challenging. Here we report an organozinc complex/MoS2 heterostructure linked by well-defined zinc-sulfur covalent bonds derived by the structural deformation and intensive coupling of dx2 - y2(Zn)-p(S) orbitals at the interface, resulting in distinctive charge transfer behaviors and excellent redox capabilities as revealed by experimental characterizations and first-principle calculations. The synthesis strategy is further generalized to more organometallic compounds, achieving various heterostructures for CO2 photoreduction. The optimal catalyst delivers a promising CH3OH yield of 2.57 mmol gcat-1 h-1 and selectivity of more than 99.5%. The reverse water gas shift mechanism is identified for methanol formation. Meanwhile, energy-unfavorable adsorption of methanol on MoS2, where the photogenerated holes accumulate, ensures the selective oxidation of water over methanol.
Collapse
Affiliation(s)
- Ming Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Cao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ke Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Tiancheng Pu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yukun Li
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials School of Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuanyu Yue
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Wenkang Ni
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yao Shi
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhang
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials School of Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pengfei Xie
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| |
Collapse
|
2
|
Yan X, Zhang J, Hao G, Jiang W, Di J. 2D Atomic Layers for CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306742. [PMID: 37840450 DOI: 10.1002/smll.202306742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Artificial photosynthesis can convert carbon dioxide into high value-added chemicals. However, due to the poor charge separation efficiency and CO2 activation ability, the conversion efficiency of photocatalytic CO2 reduction is greatly restricted. Ultrathin 2D photocatalyst emerges as an alternative to realize the higher CO2 reduction performance. In this review, the basic principle of CO2 photoreduction is introduced, and the types, advantages, and advances of 2D photocatalysts are reviewed in detail including metal oxides, metal chalcogenides, bismuth-based materials, MXene, metal-organic framework, and metal-free materials. Subsequently, the tactics for improving the performance of 2D photocatalysts are introduced in detail via the surface atomic configuration and electronic state tuning such as component tuning, crystal facet control, defect engineering, element doping, cocatalyst modification, polarization, and strain engineering. Finally, the concluding remarks and future development of 2D photocatalysts in CO2 reduction are prospected.
Collapse
Affiliation(s)
- Xihang Yan
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiajing Zhang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Gazi Hao
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
3
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
4
|
Tang J, Gu H, Zhao Y, Tan M, Zhao W, Ma R, Zhang S, Hu D. Coupling Ti doping with oxygen vacancies in tungsten oxide for high-performance photochromism applications. Chem Commun (Camb) 2023; 59:6060-6063. [PMID: 37114352 DOI: 10.1039/d3cc00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A series of Ti-doped W18O49 samples were prepared using a convenient solvothermal route. Due to the synergistic effect of doped Ti and oxygen vacancies, the samples showed excellent visible-light photochromic properties. Their performances as light-printable rewritable paper and smart windows showed great application value and promotion value.
Collapse
Affiliation(s)
- Jiamin Tang
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Hongxi Gu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Yating Zhao
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Mengdi Tan
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Weiwei Zhao
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Rong Ma
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Sheng Zhang
- School of Science, Hainan University, Haikou 570228, China
| | - Dengwei Hu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| |
Collapse
|
5
|
Wang K, Cheng M, Xia F, Cao N, Zhang F, Ni W, Yue X, Yan K, He Y, Shi Y, Dai W, Xie P. Atomically Dispersed Electron Traps in Cu Doped BiOBr Boosting CO 2 Reduction to Methanol by Pure H 2 O. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207581. [PMID: 36651007 DOI: 10.1002/smll.202207581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Overall photocatalytic conversion of CO2 and pure H2 O driven by solar irradiation into methanol provides a sustainable approach for extraterrestrial synthesis. However, few photocatalysts exhibit efficient production of CH3 OH. Here, BiOBr nanosheets supporting atomic Cu catalysts for CO2 reduction are reported. The investigation of charge dynamics demonstrates a strong built-in electric field established by isolated Cu sites as electron traps to facilitate charge transfer and stabilize charge carriers. As result, the catalysts exhibit a substantially high catalytic performance with methanol productivity of 627.66 µmol gcatal -1 h-1 and selectivity of ≈90% with an apparent quantum efficiency of 12.23%. Mechanism studies reveal that the high selectivity of methanol can be ascribed to energy-favorable hydrogenation of *CO intermediate giving rise to *CHO. The unfavorable adsorption on Cu1 @BiOBr prevents methanol from being oxidized by photogenerated holes. This work highlights the great potential of single-atom photocatalysts in chemical transformation and energy storage reactions.
Collapse
Affiliation(s)
- Ke Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ming Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fanjie Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ning Cao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fanxing Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenkang Ni
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Xuanyu Yue
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Keping Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yao Shi
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Pengfei Xie
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China
| |
Collapse
|
6
|
Li X, Xiong J, Tang Z, He W, Wang Y, Wang X, Zhao Z, Wei Y. Recent Progress in Metal Oxide-Based Photocatalysts for CO 2 Reduction to Solar Fuels: A Review. Molecules 2023; 28:molecules28041653. [PMID: 36838641 PMCID: PMC9961657 DOI: 10.3390/molecules28041653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
One of the challenges in developing practical CO2 photoconversion catalysts is the design of materials with a low cost, high activity and good stability. In this paper, excellent photocatalysts based on TiO2, WO3, ZnO, Cu2O and CeO2 metal oxide materials, which are cost-effective, long-lasting, and easy to fabricate, are evaluated. The characteristics of the nanohybrid catalysts depend greatly on their architecture and design. Thus, we focus on outstanding materials that offer effective and practical solutions. Strategies to improve CO2 conversion efficiency are summarized, including heterojunction, ion doping, defects, sensitization and morphology control, which can inspire the future improvement in photochemistry. The capacity of CO2 adsorption is also pivotal, which varies with the morphological and electronic structures. Forms of 0D, 1D, 2D and 3DOM (zero/one/two-dimensional- and three-dimensional-ordered macroporous, respectively) are involved. Particularly, the several advantages of the 3DOM material make it an excellent candidate material for CO2 conversion. Hence, we explain its preparation method. Based on the discussion, new insights and prospects for designing high-efficient metallic oxide photocatalysts to reduce CO2 emissions are presented.
Collapse
Affiliation(s)
- Xuanzhen Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
| | - Zhiling Tang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Wenjie He
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yingli Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Xiong Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
- Correspondence:
| |
Collapse
|
7
|
Bao T, Wang J, Liu C. Recent advances in epitaxial heterostructures for electrochemical applications. NANOSCALE ADVANCES 2023; 5:313-322. [PMID: 36756261 PMCID: PMC9846443 DOI: 10.1039/d2na00710j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Construction of epitaxial heterostructures is crucial for boosting the electrochemical properties of various materials, however a review dedicated to this attractive topic is still lacking. In this Minireview, a timely summary on the achievements of epitaxial heterostructure design for electrochemical applications is provided. We first introduce the synthesis strategies to provide fundamental understanding on how to create epitaxial interfaces between different components. Secondly, the superiorities of epitaxial heterostructures in electrocatalysis, supercapacitors and batteries are highlighted with the underlying structure-property relationship elucidated. Finally, a discussion on the challenges and future prospects of this field is presented.
Collapse
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 P. R. China
| | - Jing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
8
|
Samadi A, Delnavaz M, Rashtizadeh A, Heidarzadeh N. Highly efficient photodegradation of raw landfill leachate using cost-effective and optimized g-C 3N 4/SnO 2/WO 3 quantum dots under Vis-NIR light. Sci Rep 2022; 12:19457. [PMID: 36376481 PMCID: PMC9663544 DOI: 10.1038/s41598-022-24143-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
In this study, photodegradation of raw landfill leachate under Vis-NIR irradiation and sunlight has been investigated using optimized g-C3N4/SnO2/WO3 quantum dots as a novel nanocomposite. g-C3N4/SnO2/WO3 QDs was successfully synthesized and characterized using various analyses. The best mixing ratios of the nanocomposite components were obtained by response surface methodology (RSM). The morphology and the surface area characteristics of the photocatalyst were investigated by scanning and transmission electron microscopy (SEM and TEM) and Brunauer, Emmett and Teller (BET) analysis. Results of UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence (PL) spectrum revealed that the nanocomposite has a great light absorption capacity and improved separation of charge carriers. Using the optimized nanocomposite with the best mixing ratios of urea, SnO2, and WO3 QDs solution, obtained from the central composite design (CCD), the chemical oxygen demand (COD) of the leachate (4575 mg/L) was reduced by 74% and 47% in 4 h under visible-NIR and sunlight irradiations, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis also revealed that a significant reduction of aromatic compounds of the raw leachate occurred after the photodegradation process with g-C3N4/SnO2/WO3QDs nanocomposite. Moreover, the stability and recyclability of the photocatalyst were evaluated, and it was observed that after five experimental cycles of leachate degradation, no significant loss of nanocomposite performance could be seen. Financial analysis was also performed, and the feasibility of this process was investigated.
Collapse
Affiliation(s)
- Amirmohsen Samadi
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, 15719-14911, Iran
| | - Mohammad Delnavaz
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, 15719-14911, Iran.
| | - Ali Rashtizadeh
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, 15719-14911, Iran
| | - Nima Heidarzadeh
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, 15719-14911, Iran
| |
Collapse
|