1
|
Gao L, Wu D, Li S, Li H, Ma D. Graphene-supported MN 4 single-atom catalysts for multifunctional electrocatalysis enabled by axial Fe tetramer coordination. J Colloid Interface Sci 2024; 676:261-271. [PMID: 39029252 DOI: 10.1016/j.jcis.2024.07.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Multifunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are crucial for development of the key electrochemical energy storage and conversion devices, for which single-atom catalyst (SAC) has present great promises. Very recently, some experimental works showed that structurally well-defined ultra-small transition-metal clusters (such as Fe and Co tetramers, denoted as Fe4 and Co4, respectively), can efficiently modulate the catalytic behavior of SACs by axial coordination. Herein, taking the graphene-supported MN4 SACs as representatives, we theoretically explored the feasibility of realizing multifunctional SACs for ORR, OER and HER by this novel axial coordination engineering. Through extensive first-principles calculations, from 23 candidates, IrN4 decorated with Fe4 (IrN4/Fe4) is identified as the promising trifunctional catalyst with the theoretical overpotential of 0.43, 0.51 and 0.30 V for OER, ORR and HER, respectively. RhN4/Fe4 and CoN4/Fe4 are recognized as potential OER and ORR bifunctional catalysts. In addition, NiN4/Fe4 exhibits the best ORR activity with an overpotential of 0.30 V, far superior to the pristine NiN4 SAC (0.88 V). Electronic structure analyses reveal that the significantly enhanced ORR/OER activity can be ascribed to the orbital and charge redistribution of Ni/Ir active center, resulting from its electronic interaction with Fe4 cluster. This work could stimulate and guide the rational design of graphene-based multifunctional SACs realized by axial coordination of small TM clusters, and provide insights into the modulation mechanism.
Collapse
Affiliation(s)
- Lulu Gao
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Silu Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China; Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China.
| |
Collapse
|
2
|
Qiao M, Zhu D, Guo C. Advances in designing efficient electrocatalysts for nitrate reduction from a theoretical perspective. Chem Commun (Camb) 2024; 60:11642-11654. [PMID: 39292122 DOI: 10.1039/d4cc04046e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Ammonia (NH3), an important raw material for producing fertilizers and useful chemicals, plays a crucial role in modern human society. As the Haber-Bosch process is energy- and emission-intensive, it is critical to develop a green and energy-efficient route for massive NH3 production under ambient conditions. The electrochemical nitrate reduction reaction to ammonia (eNO3-RR) is a potential way for producing NH3 while harmonizing the nitrogen cycle. In this feature article, we summarize the advances in designing eNO3-RR electrocatalysts from a theoretical perspective. First, the mechanisms and pathways of the eNO3-RR are summarized. Then, the recently developed electrocatalysts, including Cu-based catalysts, single-atom catalysts (SACs), dual-atom catalysts (DACs), and MXene catalysts, are categorically discussed. Finally, the challenges and prospects of designing highly efficient eNO3-RR catalysts through theoretical simulations are discussed. This feature article will provide valuable guidance for the future development of advanced eNO3-RR electrocatalysts for NH3 production.
Collapse
Affiliation(s)
- Man Qiao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Tan R, Li Z, Xue Z, Tang Z, Wei X. Semimetallic state transition in Two-Dimensional carbon nitride covalent networks and enhanced electrocatalytic activity for nitrate to ammonia conversion. J Colloid Interface Sci 2024; 669:14-22. [PMID: 38703577 DOI: 10.1016/j.jcis.2024.04.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Single-atom catalysts (SACs), due to their maximum atomic utilization rate, show tremendous potential for application in the electrocatalytic synthesis of ammonia from nitrate. Yet, the development of superior supports that preserve the high selectivity, activity, and stability of SACs remains an imperative challenge. In this work, based on first-principles calculations and tight-binding (TB) model analysis, a new two-dimensional (2D) carbon nitride monolayer, C7N6, is proposed. The C7N6 structure exhibits a strong covalent network, with dynamical, thermal, and mechanical stability. Surprisingly, the structural transition from C9N4 to C7N6 corresponds to a semimetallic state transition. Further symmetry analysis unveils that the Dirac states in C7N6 are protected by space-time inversion symmetry, and the physical origin of the Dirac cone was confirmed using the TB model. Additionally, a non-zero Z2 invariant and significant topological edge states demonstrate its topologically nontrivial nature. Considering the excellent structural and topological properties of C7N6, a three-step screening strategy is designed to identify eligible SACs for electrochemical nitrate reduction reaction (NO3RR), and Ti@C7N6 is identified as possessing the best activity, with the last proton-electron coupling step *NH2→*NH3 being the potential-determining step (PDS), for which the limiting potential is 0.48 V. Moreover, a free energy diagram shows that the *NOH reaction pathway is energetically preferred on Ti@C7N6, and ab initio molecular dynamics (AIMD) calculations at 500 K confirm its good thermal stability. Our study not only provides excellent CN-based support material but also offers theoretical guidance for constructing highly active and selective SACs for nitrate reduction.
Collapse
Affiliation(s)
- Rui Tan
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Zehou Li
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Zhe Xue
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China.
| | - Zhenkun Tang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Xiaolin Wei
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| |
Collapse
|
4
|
Chao G, Wang J, Zong W, Fan W, Xue T, Zhang L, Liu T. Single-atom catalysts for electrocatalytic nitrate reduction into ammonia. NANOTECHNOLOGY 2024; 35:432001. [PMID: 39105490 DOI: 10.1088/1361-6528/ad64d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Ammonia (NH3) is a versatile and important compound with a wide range of uses, which is currently produced through the demanding Haber-Bosch process. Electrocatalytic nitrate reduction into ammonia (NRA) has recently emerged as a sustainable approach for NH3synthesis under ambient conditions. However, the NRA catalysis is a complex multistep electrochemical process with competitive hydrogen evolution reaction that usually results in poor selectivity and low yield rate for NH3synthesis. With maximum atom utilization and well-defined catalytic sites, single atom catalysts (SACs) display high activity, selectivity and stability toward various catalytic reactions. Very recently, a number of SACs have been developed as promising NRA electrocatalysts, but systematical discussion about the key factors that affect their NRA performance is not yet to be summarized to date. This review focuses on the latest breakthroughs of SACs toward NRA catalysis, including catalyst preparation, catalyst characterization and theoretical insights. Moreover, the challenges and opportunities for improving the NRA performance of SACs are discussed, with an aim to achieve further advancement in developing high-performance SACs for efficient NH3synthesis.
Collapse
Affiliation(s)
- Guojie Chao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
- Jiangsu Engineering Research Center of New Energy Vehicle Energy Saving and Battery Safety, WUXI Institute of Technology, Wuxi, People's Republic of China
| | - Jian Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Wei Zong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Tiantian Xue
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
5
|
Sun X, Araujo RB, Dos Santos EC, Sang Y, Liu H, Yu X. Advancing electrocatalytic reactions through mapping key intermediates to active sites via descriptors. Chem Soc Rev 2024; 53:7392-7425. [PMID: 38894661 DOI: 10.1039/d3cs01130e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Descriptors play a crucial role in electrocatalysis as they can provide valuable insights into the electrochemical performance of energy conversion and storage processes. They allow for the understanding of different catalytic activities and enable the prediction of better catalysts without relying on the time-consuming trial-and-error approaches. Hence, this comprehensive review focuses on highlighting the significant advancements in commonly used descriptors for critical electrocatalytic reactions. First, the fundamental reaction processes and key intermediates involved in several electrocatalytic reactions are summarized. Subsequently, three types of descriptors are classified and introduced based on different reactions and catalysts. These include d-band center descriptors, readily accessible intrinsic property descriptors, and spin-related descriptors, all of which contribute to a profound understanding of catalytic behavior. Furthermore, multi-type descriptors that collectively determine the catalytic performance are also summarized. Finally, we discuss the future of descriptors, envisioning their potential to integrate multiple factors, broaden application scopes, and synergize with artificial intelligence for more efficient catalyst design and discovery.
Collapse
Affiliation(s)
- Xiaowen Sun
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Rafael B Araujo
- Department of Materials Science and Engineering, The Ångstrom Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden
| | - Egon Campos Dos Santos
- Departamento de Física dos Materials e Mecânica, Instituto de Física, Universidade de SãoPaulo, 05508-090, São Paulo, Brazil
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
- Jinan Institute of Quantum Technology, Jinan Branch, Hefei National Laboratory, Jinan, 250101, China
| | - Xiaowen Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
6
|
Li H, Wu D, Wu J, Lv W, Duan Z, Ma D. Graphene-based iron single-atom catalysts for electrocatalytic nitric oxide reduction: a first-principles study. NANOSCALE 2024; 16:7058-7067. [PMID: 38445992 DOI: 10.1039/d4nr00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The electrocatalytic NO reduction reaction (NORR) emerges as an intriguing strategy to convert harmful NO into valuable NH3. Due to their unique intrinsic properties, graphene-based Fe single-atom catalysts (SACs) have gained considerable attention in electrocatalysis, while their potential for NORR and the underlying mechanism remain to be explored. Herein, using constant-potential density functional theory calculations, we systematically investigated the electrocatalytic NORR on the graphene-based Fe SACs. By changing the local coordination environment of Fe single atoms, 26 systems were constructed. Theoretical results show that, among these systems, the Fe SAC coordinated with four pyrrole N atoms and that co-coordinated with three pyridine N atoms and one O atom exhibit excellent NORR activity with low limiting potentials of -0.26 and -0.33 V, respectively, as well as have high selectivity toward NH3 by inhibiting the formation of byproducts, especially under applied potential. Furthermore, electronic structure analyses indicate that NO molecules can be effectively adsorbed and activated via the electron "donation-backdonation" mechanism. In particular, the d-band center of the Fe SACs was identified as an efficient catalytic activity descriptor for NORR. Our work could stimulate and guide the experimental exploration of graphene-based Fe SACs for efficient NORR toward NH3 under ambient conditions.
Collapse
Affiliation(s)
- Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Zhiyao Duan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
7
|
Zhu R, Qin Y, Wu T, Ding S, Su Y. Periodic Defect Engineering of Iron-Nitrogen-Carbon Catalysts for Nitrate Electroreduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307315. [PMID: 37828238 DOI: 10.1002/smll.202307315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Iron-nitrogen-carbon single atom catalyst (SAC) is regarded as one of the promising electrocatalysts for NO3 - reduction reaction (NO3 RR) to NH3 due to its high activity and selectivity. However, synergistic effects of topological defects and FeN4 active moiety in Fe-N-C SAC have rarely been investigated. By performing density functional theory (DFT) calculations, 13 defective graphene FeN4 with 585, 484, and 5775 topological line defects are constructed, yielding 585-68-FeN4 with optimal NO3 RR catalytic activity, high selectivity, as well as robust anti-dissolution stability. The high NO3 RR activity on 585-68-FeN4 is well explained by the high valence state of Fe center as well as asymmetric charge distribution on FeN4 moiety influenced by 5- and 8-member rings. This DFT work provides theoretical guidance for engineering NO3 RR performance of iron-nitrogen-carbon catalysts by modulating periodic topological defects.
Collapse
Affiliation(s)
- Runxi Zhu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanyang Qin
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tiantian Wu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
8
|
Luo F, Guo L. Bimetallic synergistic catalysts based on two-dimensional carbon-rich conjugated frameworks for nitrate electrocatalytic reduction to ammonia: catalyst screening and mechanism insights. NANOTECHNOLOGY 2024; 35:125201. [PMID: 38100833 DOI: 10.1088/1361-6528/ad1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The discovery of the 'two birds, one stone' electrochemical nitrate reduction reaction (NO3RR) allows for the removal of harmful NO3-pollutants as well as the production of economically beneficial ammonia (NH3). However, current understanding of the catalytic mechanism of NO3RR is not enough, and this research is still challenging. To determine the mechanism needed to create efficient electrocatalysts, we thoroughly examined the catalytic activity of molybdenum-based diatomic catalysts (DACs) anchored on two-dimensional carbon-rich conjugated frameworks (2D CCFs) for NO3RR. Among the 23 candidate materials, after a four-step screening method and detailed mechanism studies, we discovered that NO3RR can efficiently generate NH3by following the N-end pathway on the MoTi-Pc, MoMn-Pc, and MoNb-Pc, with limiting potential of -0.33 V, -0.13 V, and -0.38 V, respectively. The activity of NO3RR can be attributed to the synergistic effect of the TM1-TM2dimer d orbital coupling to the anti-bonding orbital of NO3-. Additionally, high hybridization between the Mo-4d, TM-3d(4d), and NO3--2p orbitals on the MoTMs-Pc DACs can speed up the flow of electrons from the Mo-TM dual-site to NO3-. The research presented here paves the way for the reasonable design of effective NO3RR catalysts and offers a theoretical basis for experimental research.
Collapse
Affiliation(s)
- FengLing Luo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China
| | - Ling Guo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China
| |
Collapse
|
9
|
Sun X, Dai Y, Huang B, Wei W. High-Throughput Screening of Effective Dual Atom Catalysts for the Nitric Oxide Reduction Reaction. J Phys Chem Lett 2023; 14:11684-11690. [PMID: 38109369 DOI: 10.1021/acs.jpclett.3c03105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Electrochemical NO-to-NH3 conversion has been attracting more attention in the field of green energy, which, however, imposes restrictions on the catalysts. We therefore design a family of dual atom catalysts (DACs) TM1TM2@g-CN and perform high-throughput screening to position the effective catalysts for electrocatalytic NO-to-NH3 conversion from first-principles computations. We identify that TiCr@g-CN (-0.37 V), TiMo@g-CN (-0.36 V), and MnMo@g-CN (-0.43 V) are promising candidates with low overpotentials. In particular, we find that MoMo@g-CN can spontaneously reduce NO to NH3, which makes it an excellent electrocatalyst for the NO reduction reaction (NORR) to be translated to experiments. In terms of the local geometry feature and local electronic structures, we unravel the origin of the high NORR activity and high selectivity of the DAC MoMo@g-CN.
Collapse
Affiliation(s)
- Xiaowen Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Guo W, Zhao T, Li F, Cai Q, Zhao J. Si 3C Monolayer as an Efficient Metal-Free Catalyst for Nitrate Electrochemical Reduction: A Computational Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2890. [PMID: 37947734 PMCID: PMC10649319 DOI: 10.3390/nano13212890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Nitrate electroreduction reaction to ammonia (NO3ER) holds great promise for both nitrogen pollution removal and valuable ammonia synthesis, which are still dependent on transition-metal-based catalysts at present. However, metal-free catalysts with multiple advantages for such processes have been rarely reported. Herein, by means of density functional theory (DFT) computations, in which the Perdew-Burke-Ernzerhof (PBE) functional is obtained by considering the possible van der Waals (vdW) interaction using the DFT+D3 method, we explored the potential of several two-dimensional (2D) silicon carbide monolayers as metal-free NO3ER catalysts. Our results revealed that the excellent synergistic effect between the three Si active sites within the Si3C monolayer enables the sufficient activation of NO3- and promotes its further hydrogenation into NO2*, NO*, and NH3, making the Si3C monolayer exhibit high NO3ER activity with a low limiting potential of -0.43 V. In particular, such an electrochemical process is highly dependent on the pH value of the electrolytes, in which acidic conditions are more favorable for NO3ER. Moreover, ab initio molecular dynamics (AIMD) simulations demonstrated the high stability of the Si3C monolayer. In addition, the Si3C monolayer shows a low formation energy, excellent electronic properties, a superior suppression effect on competing reactions, and high stability, offering significant advantages for its experimental synthesis and practical applications in electrocatalysis. Thus, a Si3C monolayer can perform as a promising NO3ER catalyst, which would open a new avenue to further develop novel metal-free catalysts for NO3ER.
Collapse
Affiliation(s)
- Wanying Guo
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China; (W.G.); (T.Z.); (Q.C.)
| | - Tiantian Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China; (W.G.); (T.Z.); (Q.C.)
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China; (W.G.); (T.Z.); (Q.C.)
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China; (W.G.); (T.Z.); (Q.C.)
| |
Collapse
|
11
|
de-la-Huerta-Sainz S, Ballesteros A, Cordero NA. Electric Field Effects on Curved Graphene Quantum Dots. MICROMACHINES 2023; 14:2035. [PMID: 38004893 PMCID: PMC10672820 DOI: 10.3390/mi14112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
The recent and continuous research on graphene-based systems has opened their usage to a wide range of applications due to their exotic properties. In this paper, we have studied the effects of an electric field on curved graphene nanoflakes, employing the Density Functional Theory. Both mechanical and electronic analyses of the system have been made through its curvature energy, dipolar moment, and quantum regeneration times, with the intensity and direction of a perpendicular electric field and flake curvature as parameters. A stabilisation of non-planar geometries has been observed, as well as opposite behaviours for both classical and revival times with respect to the direction of the external field. Our results show that it is possible to modify regeneration times using curvature and electric fields at the same time. This fine control in regeneration times could allow for the study of new phenomena on graphene.
Collapse
Affiliation(s)
| | - Angel Ballesteros
- Physics Department, Universidad de Burgos, 09001 Burgos, Spain; (S.d.-l.-H.-S.); (A.B.)
| | - Nicolás A. Cordero
- Physics Department, Universidad de Burgos, 09001 Burgos, Spain; (S.d.-l.-H.-S.); (A.B.)
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), Unversidad de Burgos, 09001 Burgos, Spain
- Institute Carlos I for Theoretical and Computational Physics (IC1), 18016 Granada, Spain
| |
Collapse
|
12
|
Lv W, Deng J, Wu D, He B, Tang G, Ma D, Jia Y, Lv P. Similar electronic state effect enables excellent activity for nitrate-to-ammonia electroreduction on both high- and low-density double-atom catalysts. J Chem Phys 2023; 159:164704. [PMID: 37873963 DOI: 10.1063/5.0162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023] Open
Abstract
Double-atom catalysts (DACs) for harmful nitrate (NO3-) electroreduction to valuable ammonia (eNO3RR) is attractive for both environmental remediation and energy transformation. However, the limited metal loading in most DACs largely hinders their applications in practical catalytic applications. Therefore, exploring ultrahigh-density (UHD) DACs with abundant active metal centers and excellent eNO3RR activity is highly desired under the site-distance effect. Herein, starting from the experimental M2N6 motif deposited on graphene, we firstly screened the low-density (LD) Mn2N6 and Fe2N6 DACs with high eNO3RR activity and then established an appropriate activity descriptor for the LD-DAC system. By utilizing this descriptor, the corresponding Mn2N6 and Fe2N6 UHD-DACs with dynamic, thermal, thermodynamic, and electrochemical stabilities, are identified to locate at the peak of activity volcano, exhibiting rather-low limiting potentials of -0.25 and -0.38 V, respectively. Further analysis in term of spin state and orbital interaction, confirms that the electronic state effect similar to that of LD-DACs enable the excellent eNO3RR activity to be maintained in the UHD-DACs. These findings highlight the promising application of Mn2N6 and Fe2N6 UHD-DACs in nitrate electroreduction for NH3 production and provide impetus for further experimental exploration of ultrahigh-density DACs based on their intrinsic electronic states.
Collapse
Affiliation(s)
- Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Jianming Deng
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Bingling He
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Gang Tang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
13
|
Wu J, Wu D, Li H, Song Y, Lv W, Yu X, Ma D. Tailoring the coordination environment of double-atom catalysts to boost electrocatalytic nitrogen reduction: a first-principles study. NANOSCALE 2023; 15:16056-16067. [PMID: 37728053 DOI: 10.1039/d3nr03310d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Tailoring the coordination environment is an effective strategy to modulate the electronic structure and catalytic activity of atomically dispersed transition-metal (TM) catalysts, which has been widely investigated for single-atom catalysts but received less attention for emerging double-atom catalysts (DACs). Herein, based on first-principles calculations, taking the commonly studied N-coordinated graphene-based DACs as references, we explored the effect of coordination engineering on the catalytic behaviors of DACs towards the electrocatalytic nitrogen reduction reaction (NRR), which is realized through replacing one N atom by the B or O atom to form B, N or O, N co-coordinated DACs. We found that B, N or O, N co-coordination could significantly strengthen N2 adsorption and alter the N2 adsorption pattern of the TM dimer active center, which greatly facilitates N2 activation. Moreover, on the studied DACs, the linear scaling relationship between the binding strengths of key intermediates can be attenuated. Consequently, the O, N co-coordinated Mn2 DACs, exhibiting an ultralow limiting potential of -0.27 V, climb to the peak of the activity volcano. In addition, the experimental feasibility of this DAC system was also identified. Overall, benefiting from the coordination engineering effect, the chemical activity and catalytic performance of the DACs for NRR can be significantly boosted. This phenomena can be understood from the adjusted electronic structure of the TM dimer active center due to the changes of its coordination microenvironment, which significantly affects the binding strength (pattern) of key intermediates and changes the reaction pathways, leading to enhanced NRR activity and selectivity. This work highlights the importance of coordination engineering in developing DACs for the electrocatalytic NRR and other important reactions.
Collapse
Affiliation(s)
- Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Yanhao Song
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
14
|
Nagarajan V, Bhuvaneswari R, Chandiramouli R. Interaction studies of propylene and butadiene on tricycle graphane nanosheet - A DFT outlook. J Mol Graph Model 2023; 121:108449. [PMID: 36965229 DOI: 10.1016/j.jmgm.2023.108449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
In this research work, we employed a tricycle graphane nanosheet as a chemical sensor to monitor the toxic hydrocarbon molecules, namely propylene, and 1,3-butadiene, which are emitted from automobile industries. At first, the structural stability and dynamical permanency of tricycle graphane is ascertained based on cohesive energy and phonon-band-spectrum. Sequentially, the electronic properties of tricycle graphane are conferred with the results of the projected density of states spectrum and band structure. The computed band gap of tricycle graphane is 5.53 eV. Chiefly, the adsorption behaviour of target propylene and 1, 3-butadiene on tricycle graphane is explored by determining adsorption energy, relative band gap variation, and Mulliken population analysis. Furthermore, the range of adsorption energy magnitudes (-0.16 eV to -1.03 eV) demonstrates that the target hydrocarbon molecules are physically adsorbed on tricycle graphane material. The overall outcome endorses that the tricycle graphane can be utilised as a prominent sensor to sense the hydrocarbon molecules released from automobiles and monitor air pollutants.
Collapse
Affiliation(s)
- V Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Bhuvaneswari
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India.
| |
Collapse
|
15
|
Bhuvaneswari R, Nagarajan V, Chandiramouli R. Recent progress on the synthesis, properties and applications of antimonene - A mini-review. J Mol Graph Model 2023; 122:108473. [PMID: 37060642 DOI: 10.1016/j.jmgm.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The recent advancement in group VA monolayer and few-layer materials leads to fascinating applications. In this mini-review, we present the state-of-the-art in the synthesis of antimonene, its properties and various applications. Besides, the electronic properties of antimonene depend on its allotropes. Furthermore, we studied the electronic properties of δ, ε, and twisted-θ antimonene nanosheets, nanoribbons, and nanoring, and the results are reported. Moreover, the structural stability and electronic properties of antimonene is influenced by its allotrope and nanostructure. The report will give insights into the synthesis, properties, applications, and future outlook of antimonene.
Collapse
|
16
|
Guo Y, Yin H, Cheng F, Li M, Zhang S, Wu D, Wang K, Wu Y, Yang B, Zhang JN. Altering Ligand Microenvironment of Atomically Dispersed CrN 4 by Axial Ligand Sulfur for Enhanced Oxygen Reduction Reaction in Alkaline and Acidic Medium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206861. [PMID: 36604967 DOI: 10.1002/smll.202206861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Because of the instability and Fenton reactivity of non-precious metal nitrogen-carbon based catalyst when processing the oxygen reduction reaction (ORR), seeking for electrocatalysts with highly efficient performance becomes very highly desired to speed up the commercialization of fuel cell. Herein, chromium (Cr)-N4 electrocatalyst containing extraterrestrial S formed axial S1 -Cr1 N4 bonds (S1 Cr1 N4 C) is achieved via an assembly polymerization and confined pyrolysis strategy. Benefiting from the adjusting coordination configuration and electronic structure of the metal center through axial coordination, S1 Cr1 N4 C exhibits enhanced the intrinsic activity (half-wave potential (E1/2 ) is 0.90 V versus reversable hydrogen electrode, RHE) compared with that of CrN4 C and Pt/C catalysts. More notably, the catalyst is almost inert in catalyzing the Fenton reaction, and thus shows the high stability. Density functional theory (DFT) results further reveal that the existence of axial S atoms in S1 Cr1 N4 C moiety has the better ORR activity than Cr1 N4 C moieties. The axial S ligand in S1 Cr1 N4 C moiety can break the electron localization around the planar Cr1 N4 active center, which facilitated the rate-limiting reductive release of OH* and accelerated overall ORR process. The present work opens up a new avenue to modulate the axial ligand type of the single-atoms (SAs) active center to enhance intrinsic SAs performances.
Collapse
Affiliation(s)
- Yingying Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, P. R. China
| | - Hengbo Yin
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Feifei Cheng
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, P. R. China
| | - Minhan Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, P. R. China
| | - Donghai Wu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, P. R. China
| | - Kaixi Wang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, P. R. China
| | - Yunhan Wu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, P. R. China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, P. R. China
| | - Jia-Nan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
17
|
Jiang H, Chen GF, Savateev O, Xue J, Ding LX, Liang Z, Antonietti M, Wang H. Enabled Efficient Ammonia Synthesis and Energy Supply in a Zinc-Nitrate Battery System by Separating Nitrate Reduction Process into Two Stages. Angew Chem Int Ed Engl 2023; 62:e202218717. [PMID: 36728627 DOI: 10.1002/anie.202218717] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
The aqueous electrocatalytic reduction of NO3 - into NH3 (NitrRR) presents a sustainable route applicable to NH3 production and potentially energy storage. However, the NitrRR involves a directly eight-electron transfer process generally required a large overpotential (<-0.2 V versus reversible hydrogen electrode (vs. RHE)) to reach optimal efficiency. Here, inspired by biological nitrate respiration, the NitrRR was separated into two stages along a [2+6]-electron pathway to alleviate the kinetic barrier. The system employed a Cu nanowire catalyst produces NO2 - and NH3 with current efficiencies of 91.5 % and 100 %, respectively at lower overpotentials (>+0.1 vs. RHE). The high efficiency for such a reduction process was further explored in a zinc-nitrate battery. This battery could be specified by a high output voltage of 0.70 V, an average energy density of 566.7 Wh L-1 at 10 mA cm-2 and a power density of 14.1 mW cm-2 , which is well beyond all previously reported similar concepts.
Collapse
Affiliation(s)
- Haifeng Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.,Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Gao-Feng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Oleksandr Savateev
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Xue
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liang-Xin Ding
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhenxing Liang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Zeraati-Moghani M. First-principles study of nitrogen-doped porous graphene for Na+, K+, Mg2+, and Ca2+ cations adsorption. Struct Chem 2023. [DOI: 10.1007/s11224-023-02157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
19
|
Jiang L, Yang Q, Xia Z, Yu X, Zhao M, Shi Q, Yu Q. Recent progress of theoretical studies on electro- and photo-chemical conversion of CO 2 with single-atom catalysts. RSC Adv 2023; 13:5833-5850. [PMID: 36816079 PMCID: PMC9932639 DOI: 10.1039/d2ra08021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The CO2 reduction reaction (CO2RR) into chemical products is a promising and efficient way to combat the global warming issue and greenhouse effect. The viability of the CO2RR critically rests with finding highly active and selective catalysts that can accomplish the desired chemical transformation. Single-atom catalysts (SACs) are ideal in fulfilling this goal due to the well-defined active sites and support-tunable electronic structure, and exhibit enhanced activity and high selectivity for the CO2RR. In this review, we present the recent progress of quantum-theoretical studies on electro- and photo-chemical conversion of CO2 with SACs and frameworks. Various calculated products of CO2RR with SACs have been discussed, including CO, acids, alcohols, hydrocarbons and other organics. Meanwhile, the critical challenges and the pathway towards improving the efficiency of the CO2RR have also been discussed.
Collapse
Affiliation(s)
- Liyun Jiang
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qingqing Yang
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Zhaoming Xia
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University Beijing China
| | - Xiaohu Yu
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Mengdie Zhao
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qiping Shi
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qi Yu
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
20
|
Xu Z, Cui H, Zhang G. Pd-Decorated WTe 2 Monolayer as a Favorable Sensing Material toward SF 6 Decomposed Species: A DFT Study. ACS OMEGA 2023; 8:4244-4250. [PMID: 36743050 PMCID: PMC9893256 DOI: 10.1021/acsomega.2c07456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Based on density functional theory, this work first investigates the Pd-decorating property on the pristine WTe2 monolayer and then simulates the adsorption performance of a Pd-decorated WTe2 (Pd-WTe2) monolayer on SO2 and SOF2 molecules, in order to explore its sensing potential for SF6 decomposed species. It is found that the Pd atom can be stably anchored on the top of the W atom of the WTe2 monolayer with a binding energy of -2.43 eV. The Pd-WTe2 monolayer performs chemisorption on SO2 and SOF2, with adsorption energies of -1.36 and -1.17 eV, respectively. The analyses of the band structure and density of states reveal the deformed electronic property of the WTe2 monolayer by Pd-decoration, as well as that of the Pd-WTe2 monolayer by gas adsorption. The bandgap of the Pd-Wte2 monolayer is increased by 1.6% in the SO2 system and is decreased by -3.9% in the SOF2 system, accounting for the sensing response of 42.0 and -56.7% for the detection of two gases. Moreover, the changed work function (WF) in two gas systems in comparison with that of the pristine Pd-WTe2 monolayer suggests its potential as a WF-based gas sensor for sensing two gases as well. This paper uncovers the gas sensing potential of the Pd-WTe2 monolayer to evaluate the operation status of SF6 insulation devices, which also illustrates the strong potential of WTe2-based materials for gas sensing applications in some other fields.
Collapse
Affiliation(s)
- Zhuoli Xu
- Hubei
Engineering Research Center for Safety Monitoring of New Energy and
Power Grid Equipment, Hubei University of
Technology, Wuhan430068, China
| | - Hao Cui
- College
of Artificial Intelligence, Southwest University, Chongqing400715, China
| | - Guozhi Zhang
- Hubei
Engineering Research Center for Safety Monitoring of New Energy and
Power Grid Equipment, Hubei University of
Technology, Wuhan430068, China
| |
Collapse
|
21
|
Liu X, Sheng L. Potential of Single Transition Metal Atom Embedded C
2
N as Efficient Catalysts for N
2
O Reduction: Theoretical Investigation. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xinmiao Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Li Sheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
22
|
Wu H, Xia Y, Zhang C, Xie S, Wu S, Cui H. Adsorptions of C 5F 10O decomposed compounds on the Cu-decorated NiS 2 monolayer: a first-principles theory. Mol Phys 2023. [DOI: 10.1080/00268976.2022.2163715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hailong Wu
- School of Mechanical and Resource Engineering, Wuzhou University, Wuzhou, People’s Republic of China
| | - Yalong Xia
- Power Internet of Things Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
- State Grid Sichuan Electric Power Research Institute, Chengdu, People’s Republic of China
| | - Chenmeng Zhang
- Power Internet of Things Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
- State Grid Sichuan Electric Power Research Institute, Chengdu, People’s Republic of China
| | - Shijun Xie
- Power Internet of Things Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
- State Grid Sichuan Electric Power Research Institute, Chengdu, People’s Republic of China
| | - Siqing Wu
- School of Electronic and Information Engineering, Hubei University of Science & Technology, Xianning, People’s Republic of China
| | - Hao Cui
- College of Artificial Intelligence, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
23
|
Li X, Shen P, Li X, Ma D, Chu K. Sub-nm RuO x Clusters on Pd Metallene for Synergistically Enhanced Nitrate Electroreduction to Ammonia. ACS NANO 2023; 17:1081-1090. [PMID: 36630658 DOI: 10.1021/acsnano.2c07911] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical nitrate reduction to ammonia reaction (NO3RR) has emerged as an appealing route for achieving both wastewater treatment and ammonia production. Herein, sub-nm RuOx clusters anchored on a Pd metallene (RuOx/Pd) are reported as a highly effective NO3RR catalyst, delivering a maximum NH3-Faradaic efficiency of 98.6% with a corresponding NH3 yield rate of 23.5 mg h-1 cm-2 and partial a current density of 296.3 mA cm-2 at -0.5 V vs RHE. Operando spectroscopic characterizations combined with theoretical computations unveil the synergy of RuOx and Pd to enhance the NO3RR energetics through a mechanism of hydrogen spillover and hydrogen-bond interactions. In detail, RuOx activates NO3- to form intermediates, while Pd dissociates H2O to generate *H, which spontaneously migrates to the RuOx/Pd interface via a hydrogen spillover process. Further hydrogen-bond interactions between spillovered *H and intermediates makes spillovered *H desorb from the RuOx/Pd interface and participate in the intermediate hydrogenation, contributing to the enhanced activity of RuOx/Pd for NO3--to-NH3 conversion.
Collapse
Affiliation(s)
- Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
24
|
Jin C, Fan S, Zhuang Z, Zhou Y. Single-atom nanozymes: From bench to bedside. NANO RESEARCH 2023; 16:1992-2002. [PMID: 36405985 PMCID: PMC9643943 DOI: 10.1007/s12274-022-5060-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 05/06/2023]
Abstract
Single-atom nanozymes (SANs) are the new emerging catalytic nanomaterials with enzyme-mimetic activities, which have many extraordinary merits, such as low-cost preparation, maximum atom utilization, ideal catalytic activity, and optimized selectivity. With these advantages, SANs have received extensive research attention in the fields of chemistry, energy conversion, and environmental purification. Recently, a growing number of studies have shown the great promise of SANs in biological applications. In this article, we present the most recent developments of SANs in anti-infective treatment, cancer diagnosis and therapy, biosensing, and antioxidative therapy. This text is expected to better guide the readers to understand the current state and future clinical possibilities of SANs in medical applications.
Collapse
Affiliation(s)
- Chanyuan Jin
- Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101 China
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081 China
| |
Collapse
|
25
|
How an electric field makes endohedral fullerene an improved catalyst for hydrogen evolution reaction. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Ma Z, Lv P, Wu D, Li X, Chu K, Ma D, Jia Y. V (Nb) Single Atoms Anchored by the Edge of a Graphene Armchair Nanoribbon for Efficient Electrocatalytic Nitrogen Reduction: A Theoretical Study. Inorg Chem 2022; 61:17864-17872. [DOI: 10.1021/acs.inorgchem.2c03204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyu Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Peng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng475004, China
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou450006, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Xue Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng475004, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou450001, China
| |
Collapse
|