1
|
Li D, Ha E, Zhou Z, Zhang J, Zhu Y, Ai F, Yan L, He S, Li L, Hu J. "Spark" PtMnIr Nanozymes for Electrodynamic-Boosted Multienzymatic Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308747. [PMID: 38108600 DOI: 10.1002/adma.202308747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Indexed: 12/19/2023]
Abstract
Multienzyme-mimicking redox nanozymes capable of efficient reactive oxygen species (ROS) generation and cellular homeostasis disruption are highly pursued for cancer therapy. However, it still faces challenges from the complicate tumor microenvironment (TME) and high chance for tumor metastasis. Herein, well-dispersed PtMnIr nanozymes are designed with multiple enzymatic activities, including catalase (CAT), oxidase (OXD), superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx), which continuously produce ROS and deplete glutathione (GSH) concurrently in an "inner catalytic loop" way. With the help of electrodynamic stimulus, highly active "spark" species (Ir3+ and Mn3+ ) are significantly increased, resulting in an effective cascade enzymatic and electrodynamic therapy. Moreover, the cyclic generation of ROS can also facilitate ferroptosis and apoptosis in tumor cells, boosting synergistic therapy. Importantly, lung metastasis inhibition is found, which confirms efficient immunotherapy by the combined effect of immunogenic cell death (ICD) and Mn2+ -induced cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway, contributing great potential in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Danyang Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Enna Ha
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Zhenli Zhou
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Jingge Zhang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Yaoyao Zhu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Shuqing He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Lei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| |
Collapse
|
2
|
Zhang J, Ha E, Li D, He S, Wang L, Kuang S, Hu J. Dual enzyme-like Co-FeSe 2 nanoflowers with GSH degradation capability for NIR II-enhanced catalytic tumor therapy. J Mater Chem B 2023; 11:4274-4286. [PMID: 37140154 DOI: 10.1039/d3tb00220a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanozymes mediated catalytic therapy can produce toxic reactive oxygen species (ROS) and destroy the metabolic balance of tumor cells, providing a new direction for cancer treatment. However, the catalytic efficiency of a single nanozyme is limited by the complexity of the tumor microenvironment (hypoxia, GSH overexpression, etc.). In order to overcome these problems, we designed flower-like Co-doped FeSe2 (Co-FeSe2) nanozymes by a simple wet chemistry method. Co-FeSe2 nanozymes not only exhibit high POD and OXD-mimicking activities for facile kinetics, but also effectively consume over-expressed glutathione (GSH), inhibiting the consumption of generated ROS and destroying the metabolic balance of the tumor microenvironment. These catalytic reactions trigger cell death through apoptosis and ferroptosis dual pathways. More importantly, under the NIR II laser irradiation, the catalytic activities of Co-FeSe2 nanozymes are boosted, confirming the photothermal and catalytic synergistic tumor therapy. This study takes advantage of self-cascading engineering that offers new ideas for designing efficient redox nanozymes and promoting their clinical translation.
Collapse
Affiliation(s)
- Jingge Zhang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China.
| | - Enna Ha
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China.
| | - Danyang Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China.
| | - Shuqing He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China.
| | - Luyang Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China
| | - Shaolong Kuang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China.
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|