1
|
Tan M, Yu C, Zeng H, Liu C, Dong W, Meng H, Su Y, Qiao L, Gao L, Lu Q, Bai Y. In situ fabrication of MIL-68(In)@ZnIn 2S 4 heterojunction for enhanced photocatalytic hydrogen production. NANOSCALE 2023; 15:2425-2434. [PMID: 36651383 DOI: 10.1039/d2nr07017k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), as a class of semiconductor-like materials, are widely used in photocatalysis. However, the limited visible light absorption and poor charge separation efficiency are the main challenges restricting their photocatalytic performance. Herein, the type II heterojunction MIL-68(In)@ZIS was successfully fabricated by in situ growth of ZnIn2S4 (ZIS) on the surface of a representative MOF, i.e. MIL-68(In). After composition optimization, MIL-68(In)-20@ZIS shows an extraordinary photocatalytic hydrogen production efficiency of 9.09 mmol g-1 h-1 and good photochemical stability, which far exceeds those of most photocatalysts. The hierarchical loose structure of MIL-68(In)-20@ZIS is conducive to the adsorption of reactants and mass transfer. Meanwhile, a large number of tight 2D contact interfaces significantly reduce the obstruction of charge transfer, paving the way for high-perform photocatalytic hydrogen evolution. The experimental results demonstrate that the MIL-68(In)@ZIS heterojunction achieves intensive photoresponse and effective charge separation and transfer benefiting from unique charge transport paths of a type II heterojunction. This study opens an avenue toward MOF-based heterojunctions for solar energy conversion.
Collapse
Affiliation(s)
- Mengxi Tan
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengye Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hua Zeng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanbao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjun Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huimin Meng
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Cheng S, Su N, Zhang P, Fang Y, Wang J, Zhou X, Dong H, Li C. Coupling effect of (SCN)x nanoribbons on PCN nanosheets in the metal-free 2D/1D Van der Waals heterojunction for boosting photocatalytic hydrogen evolution from water splitting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|