Wang M, Quesada-Cabrera R, Sathasivam S, Blunt MO, Borowiec J, Carmalt CJ. Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure.
ACS APPLIED MATERIALS & INTERFACES 2023;
15:49270-49280. [PMID:
37824823 PMCID:
PMC10614188 DOI:
10.1021/acsami.3c11525]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
The search for efficient materials for sustainable infrastructure is an urgent challenge toward potential negative emission technologies and the global environmental crisis. Pleasant, efficient sunlight-activated coatings for applications in self-cleaning windows are sought in the glass industry, particularly those produced from scalable technologies. The current work presents visible-light-active iodide-doped BiOBr thin films fabricated using aerosol-assisted chemical vapor deposition. The impact of dopant concentration on the structural, morphological, and optical properties was studied systematically. The photocatalytic properties of the parent materials and as-deposited doped films were evaluated using the smart ink test. An optimized material was identified as containing 2.7 atom % iodide dopant. Insight into the photocatalytic behavior of these coatings was gathered from photoluminescence and photoelectrochemical studies. The optimum photocatalytic performance could be explained from a balance between photon absorption, charge generation, carrier separation, and charge transport properties under 450 nm irradiation. This optimized iodide-doped BiOBr coating is an excellent candidate for the photodegradation of volatile organic pollutants, with potential applications in self-cleaning windows and other surfaces.
Collapse