1
|
Zhang X, Liu X, Yao Y, Liu Y, Zeng C, Zhang Q. Programmable Molecular Signal Transmission Architecture and Reactant Regeneration Strategy Driven by EXO λ for DNA Circuits. ACS Synth Biol 2023; 12:2107-2117. [PMID: 37405388 DOI: 10.1021/acssynbio.3c00168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The characteristics of DNA hybridization enable molecular computing through strand displacement reactions, facilitating the construction of complex DNA circuits, which is an important way to realize information interaction and processing at a molecular level. However, signal attenuation in the cascade and shunt process hinders the reliability of the calculation results and further expansion of the DNA circuit scale. Here, we demonstrate a novel programmable exonuclease-assisted signal transmission architecture, where DNA strand with toehold employed to inhibit the hydrolysis process of EXO λ is applied in DNA circuits. We construct a series circuit with variable resistance and a parallel circuit with constant current source, ensuring excellent orthogonal properties between input and output sequences while maintaining low leakage (<5%) during the reaction. Additionally, a simple and flexible exonuclease-driven reactant regeneration (EDRR) strategy is proposed and applied to construct parallel circuits with constant voltage sources that could amplify the output signal without extra DNA fuel strands or energy. Furthermore, we demonstrate the effectiveness of the EDRR strategy in reducing signal attenuation during cascade and shunt processes by constructing a four-node DNA circuit. These findings offer a new approach to enhance the reliability of molecular computing systems and expand the scale of DNA circuits in the future.
Collapse
Affiliation(s)
- Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Zhu J, Tivony R, Bošković F, Pereira-Dias J, Sandler SE, Baker S, Keyser UF. Multiplexed Nanopore-Based Nucleic Acid Sensing and Bacterial Identification Using DNA Dumbbell Nanoswitches. J Am Chem Soc 2023. [PMID: 37220424 DOI: 10.1021/jacs.3c01649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multiplexed nucleic acid sensing methods with high specificity are vital for clinical diagnostics and infectious disease control, especially in the postpandemic era. Nanopore sensing techniques have developed in the past two decades, offering versatile tools for biosensing while enabling highly sensitive analyte measurements at the single-molecule level. Here, we establish a nanopore sensor based on DNA dumbbell nanoswitches for multiplexed nucleic acid detection and bacterial identification. The DNA nanotechnology-based sensor switches from an "open" into a "closed" state when a target strand hybridizes to two sequence-specific sensing overhangs. The loop in the DNA pulls two groups of dumbbells together. The change in topology results in an easily recognized peak in the current trace. Simultaneous detection of four different sequences was achieved by assembling four DNA dumbbell nanoswitches on one carrier. The high specificity of the dumbbell nanoswitch was verified by distinguishing single base variants in DNA and RNA targets using four barcoded carriers in multiplexed measurements. By combining multiple dumbbell nanoswitches with barcoded DNA carriers, we identified different bacterial species even with high sequence similarity by detecting strain specific 16S ribosomal RNA (rRNA) fragments.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Filip Bošković
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|