Li P, Kong D, Yang J, Cui S, Chen Q, Liu Y, He Z, Liu F, Xu Y, Wei H, Zheng X, Peng M. Engineering Nonvolatile Polarization in 2D α-In
2Se
3/α-Ga
2Se
3 Ferroelectric Junctions.
NANOMATERIALS (BASEL, SWITZERLAND) 2025;
15:163. [PMID:
39940138 PMCID:
PMC11820334 DOI:
10.3390/nano15030163]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
The advent of two-dimensional (2D) ferroelectrics offers a new paradigm for device miniaturization and multifunctionality. Recently, 2D α-In2Se3 and related III-VI compound ferroelectrics manifest room-temperature ferroelectricity and exhibit reversible spontaneous polarization even at the monolayer limit. Here, we employ first-principles calculations to investigate group-III selenide van der Waals (vdW) heterojunctions built up by 2D α-In2Se3 and α-Ga2Se3 ferroelectric (FE) semiconductors, including structural stability, electrostatic potential, interfacial charge transfer, and electronic band structures. When the FE polarization directions of α-In2Se3 and α-Ga2Se3 are parallel, both the α-In2Se3/α-Ga2Se3 P↑↑ (UU) and α-In2Se3/α-Ga2Se3 P↓↓ (NN) configurations possess strong built-in electric fields and hence induce electron-hole separation, resulting in carrier depletion at the α-In2Se3/α-Ga2Se3 heterointerfaces. Conversely, when they are antiparallel, the α-In2Se3/α-Ga2Se3 P↓↑ (NU) and α-In2Se3/α-Ga2Se3 P↑↓ (UN) configurations demonstrate the switchable electron and hole accumulation at the 2D ferroelectric interfaces, respectively. The nonvolatile characteristic of ferroelectric polarization presents an innovative approach to achieving tunable n-type and p-type conductive channels for ferroelectric field-effect transistors (FeFETs). In addition, in-plane biaxial strain modulation has successfully modulated the band alignments of the α-In2Se3/α-Ga2Se3 ferroelectric heterostructures, inducing a type III-II-III transition in UU and NN, and a type I-II-I transition in UN and NU, respectively. Our findings highlight the great potential of 2D group-III selenides and ferroelectric vdW heterostructures to harness nonvolatile spontaneous polarization for next-generation electronics, nonvolatile optoelectronic memories, sensors, and neuromorphic computing.
Collapse