1
|
Ruiz-Garcia M, Barriuso G CM, Alexander LC, Aarts DGAL, Ghiringhelli LM, Valeriani C. Discovering dynamic laws from observations: The case of self-propelled, interacting colloids. Phys Rev E 2024; 109:064611. [PMID: 39020989 DOI: 10.1103/physreve.109.064611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Active matter spans a wide range of time and length scales, from groups of cells and synthetic self-propelled colloids to schools of fish and flocks of birds. The theoretical framework describing these systems has shown tremendous success in finding universal phenomenology. However, further progress is often burdened by the difficulty of determining forces controlling the dynamics of individual elements within each system. Accessing this local information is pivotal for the understanding of the physics governing an ensemble of active particles and for the creation of numerical models capable of explaining the observed collective phenomena. In this work, we present ActiveNet, a machine-learning tool consisting of a graph neural network that uses the collective motion of particles to learn active and two-body forces controlling their individual dynamics. We verify our approach using numerical simulations of active Brownian particles, active particles undergoing underdamped Langevin dynamics, and chiral active Brownian particles considering different interaction potentials and values of activity. Interestingly, ActiveNet can equally learn conservative or nonconservative forces as well as torques. Moreover, ActiveNet has proven to be a useful tool to learn the stochastic contribution to the forces, enabling the estimation of the diffusion coefficients. Therefore, all coefficients of the equation of motion of Active Brownian Particles are captured. Finally, we apply ActiveNet to experiments of electrophoretic Janus particles, extracting the active and two-body forces controlling colloids' dynamics. On the one side, we have learned that the active force depends on the electric field and area fraction. On the other side, we have also discovered a dependence of the two-body interaction with the electric field that leads us to propose that the dominant force between active colloids is a screened electrostatic interaction with a constant length scale. We believe that the proposed methodological tool, ActiveNet, might open a new avenue for the study and modeling of experimental suspensions of active particles.
Collapse
Affiliation(s)
- Miguel Ruiz-Garcia
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
- Grupo Interdisciplinar Sistemas Complejos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | - Luca M Ghiringhelli
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany
- Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg, Martensstrasse 5-7, 91058 Erlangen, Germany
| | | |
Collapse
|
2
|
Huang X, Li X, Tay A. Advances in techniques to characterize cell-nanomaterial interactions (CNI). NANO TODAY 2024; 55:102149. [DOI: 10.1016/j.nantod.2024.102149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|