1
|
Zhang X, Xu Y, Wang X, Chen T, Yao Q, Chang S, Guo X, Liu X, Wu H, Cui Y, Wang J, Ji Y. Enhanced immunochromatographic assay using multifunctional gold@iridium nanoflower with colorimetric photothermal catalytic activity for the detection of staphylococcal enterotoxin B. Food Chem 2024; 460:140710. [PMID: 39106748 DOI: 10.1016/j.foodchem.2024.140710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
The development of a rapid, sensitive, and accurate screening method for staphylococcal enterotoxin B (SEB) in food is urgently needed because trace amounts of SEB can pose a serious threat to human health. Here, we developed a ultrasensitive triple-modal immunochromatographic assay (ICA) for SEB detection. The AuNFs@Ir nanoflowers exhibited enhanced colorimetric, photothermal, and catalytic performance by modulating the sharp branching structure of the gold nanoflowers and depositing high-density Ir atoms. Subsequently, the combination of AuNFs@Ir and ICA promoted colorimetric, catalytic amplified colorimetric, and photothermal-assisted quantitative detection. The results showed detection limits of 0.175, 0.0188, and 0.043 ng mL-1 in the colorimetric/photothermal/catalytic mode, which increased the sensitivity by 16.5-fold, 153.7-fold, and 67.2-fold, respectively, compared with the AuNPs-ICA. Furthermore, the proposed strategy was verified in milk, milk powder, pork, and beef successfully. This strategy improves significantly the sensitivity, accuracy, flexibility and offers an effective insight for foodborne bacterial toxin monitoring.
Collapse
Affiliation(s)
- Xiaoling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjun Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiatong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianxi Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaohe Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuhua Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Zhang F, Chen J, Zhao F, Liu M, Peng K, Pu Y, Sang Y, Wang S, Wang X. Microfabrication of engineered Lactococcus lactis biocarriers with genetically programmed immunorecognition probes for sensitive lateral flow immunoassay of antibiotic in milk and lake water. Biosens Bioelectron 2024; 252:116139. [PMID: 38412686 DOI: 10.1016/j.bios.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/20/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
Micro/nanomaterials display considerable potential for increasing the sensitivity of lateral flow immunoassay (LFIA) by acting as 3D carriers for both antibodies and signals. The key to achieving high detection sensitivity depends on the probe's orientation on the material surface and its multivalent biomolecular interactions with targets. Here, we engineer Lactococcus lactis as the bacterial microcarrier (BMC) for a multivalent immunorecognition probe that was genetically programmed to display multifunctional components including a phage-screened single-chain variable fragment (scFv), an enhanced green fluorescent protein (eGFP), and a C-terminal peptidoglycan-binding domain (AcmA) anchored on BMC through the cell wall peptidoglycan. The innovative design of this biocarrier system, which incorporates a lab-on-a-chip microfluidic device, allows for the rapid and non-destructive self-assembly of the multivalent scFv-eGFP-AcmA@BMC probe, in which the 3D structure of BMC with a large peptidoglycan surface area facilitates the precisely orientated attachment and immobilization of scFv-eGFP-AcmA. This leads to a remarkable fluorescence aggregation amplification effect in LFIA, outperforming a monovalent 2D scFv-eGFP-AcmA probe for florfenicol detection. By designing a portable sensing device, we achieved an exceptionally low detection limit of 0.28 pg/mL and 0.21 pg/mL for florfenicol in lake water and milk sample, respectively. The successful microfabrication of this biocarrier holds potential to inspire innovative biohybrid designs for environment and food safety biosensing applications.
Collapse
Affiliation(s)
- Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Jiajie Chen
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Fangkun Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Minxuan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Kaige Peng
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Yuanhao Pu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Shuo Wang
- Medical College, Nankai University, Tianjin, 300500, China.
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
3
|
Huang Z, Wen J, Ma G, Liu Y, Tan H. Time-resolved fluorescence immunoassay based on glucose oxidase-encapsulated metal-organic framework for amplified detection of foodborne pathogen. Anal Chim Acta 2024; 1287:342111. [PMID: 38182387 DOI: 10.1016/j.aca.2023.342111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Fluorescence immunoassays are commonly employed for the detection of pathogenic bacteria as a means of ensuring food safety and preserving public health. However, the challenges such as poor photostability and background interference have limited their sensitivity and accuracy. The emergence of metal-organic frameworks (MOFs) as a label probe offers a promising solution for advancing fluorescence immunoassays owing to their tunable nature. Nonetheless, the low fluorescence efficiency of MOFs and the potential risk of dye leakage pose obstacles to achieving high detection sensitivity. Therefore, there exists a pressing need to fully utilize the potential of MOF composites in fluorescence immunoassays. RESULTS We explored the potential of glucose oxidase-encapsulated zeolitic imidazole framework-90 (GOx@ZIF-90) as a label probe to construct a time-resolved fluorescence immunoassay with amplified detection signal. This immunoassay involved functionalizing Fe3O4 nanoparticle with porcine antibody to specifically capture and separate the target bacteria, Staphylococcus aureus (S. aureus). The captured S. aureus was then bound by GOx@ZIF-90 modified with vancomycin, resulting in a fluorescence response in the europium tetracycline (EuTc). The encapsulation of GOx in ZIF-90 provided a confinement effect that significantly enhanced the catalytic activity and stability of GOx. This led to a highly efficient conversion of glucose to H2O2, amplifying the fluorescence signal of EuTc. The immunoassay demonstrated a high sensitivity in detecting S. aureus, with a detection limit of 2 CFU/mL. We also obtained satisfactory results in milk samples. Attractively, the time-resolved detection mode of EuTc allowed the immunoassay to eliminate background fluorescence and enhance accuracy. SIGNIFICANCE This study not only presented a new method for detecting foodborne pathogens but also highlighted the potential of enzyme-encapsulated MOF composites as label probes in immunoassays, providing valuable insights for the design and fabrication of MOF composites for various applications.
Collapse
Affiliation(s)
- Zhiyang Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Jin Wen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Guangran Ma
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Yongjun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongliang Tan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| |
Collapse
|
4
|
Zhao X, Qin BB, He T, Wang HP, Liu J. Stable Pyrene-Based Metal-Organic Framework for Cyclization of Propargylic Amines with CO 2 and Detection of Antibiotics in Water. Inorg Chem 2023; 62:18553-18562. [PMID: 37906732 DOI: 10.1021/acs.inorgchem.3c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A pyrene-based metal-organic framework, Cd2(PTTB)(H2O)2 (WYU-11), was synthesized from the tetracarboxylic pyrene ligand H4PTTB (H4PTTB = 1,3,6,8-tetrakis(3-carboxyphenyl)pyrene) and Cd(NO3)2·4H2O. Powder X-ray diffraction analysis discloses that the framework is stable in acid, base, and various organic solvent environments. WYU-11 shows excellent catalytic performance on the cyclization reaction of propargylic amines with CO2 into 2-oxazolidinones under mild conditions (60 °C, atmospheric CO2). 1H NMR studies unveiled that WYU-11 and 1,1,3,3-tetramethylguanidine (TMG) can synergistically activate the propargylic amine substrate and promote the reaction. Importantly, WYU-11 represents a rare example of noble metal-free heterogeneous catalyst that can catalyze the cyclization of CO2 with propargylic amines. In addition, by virtue of the excellent water stability and luminescence properties, WYU-11 shows excellent detection performance for sulfathiazole (STZ) and ornidazole (ODZ) in water. Investigation reveals that the coexistence of photoinduced electron transfer and internal filtering effect could reasonably explain the luminescence quenching of WYU-11 by the antibiotics.
Collapse
Affiliation(s)
- Xin Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Bing-Bing Qin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Tao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Hai-Ping Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Jiewei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| |
Collapse
|