1
|
Fu L, Nam HN, Zhou J, Kang Y, Wang K, Zhou Z, Zhao Y, Zhu L, Nandan R, Eguchi M, Phung QM, Yokoshima T, Wu K, Yamauchi Y. Mesoporous High-Entropy Alloy Films. ACS NANO 2024; 18:27617-27629. [PMID: 39324413 DOI: 10.1021/acsnano.4c08929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
High-entropy alloys (HEAs) are promising materials for electrochemical energy applications due to their excellent catalytic performance and durability. However, the controlled synthesis of HEAs with a well-defined structure and a uniform composition distribution remains a challenge. Herein, a soft template-assisted electrodeposition technique is used to fabricate a mesoporous HEA (m-HEA) film with a uniform composition distribution of Pt, Pd, Rh, Ru, and Cu, providing a suitable platform for investigating structure-performance relationships. Electrochemical deposition enables the uniform nucleation and grain growth of m-HEA, which can be deposited onto many conductive substrates. The m-HEA film exhibits an enhanced mass activity of 4.2 A mgPt-1 toward methanol oxidation reaction (MOR), which is 7.2-fold and 35-fold higher than a mesoporous Pt film and commercial Pt black, respectively. Experimental characterization indicates that structural defects and a low work function of the m-HEA film offer sufficient active sites and fast electron-transfer kinetics. Furthermore, theoretical calculations demonstrate that the variety of favorable adsorption sites on multimetallic elements of HEA reduces the barriers for dehydration pathways and *CO species removal, ensuring optimal performance for complex MOR reactions. This work provides an effective approach to designing a variety of HEA catalysts with well-controlled porous structures for targeted electrocatalytic applications.
Collapse
Affiliation(s)
- Lei Fu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Jun Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yunqing Kang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Kaiteng Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zilin Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Ravi Nandan
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kai Wu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
2
|
Chen Z, Ma T, Wei W, Wong WY, Zhao C, Ni BJ. Work Function-Guided Electrocatalyst Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401568. [PMID: 38682861 DOI: 10.1002/adma.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Indexed: 05/01/2024]
Abstract
The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Zhang X, Wu F, Zhang Q, Lu Z, Zheng Y, Zhu Y, Lin Y. Self-Supported WO 3@RuO 2 Nanowires for Electrocatalytic Acidic Water Oxidation. Inorg Chem 2024; 63:8418-8425. [PMID: 38644568 DOI: 10.1021/acs.inorgchem.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Developing catalysts with high catalytic activity and stability in acidic media is crucial for advancing hydrogen production in proton exchange membrane water electrolyzers (PEMWEs). To this end, a self-supported WO3@RuO2 nanowire structure was grown in situ on a titanium mesh using hydrothermal and ion-exchange methods. Despite a Ru loading of only 0.098 wt %, it achieves an overpotential of 246 mV for the oxygen evolution reaction (OER) at a current density of 10 mA·cm-2 in acidic 0.5 M H2SO4 while maintaining excellent stability over 50 h, much better than that of the commercial RuO2. After the establishment of the WO3@RuO2 heterostructure, a reduced overpotential of the rate-determining step from M-O* to M-OOH* is confirmed by the DFT calculation. Meanwhile, its enhanced OER kinetics are also greatly improved by this self-supported system in the absence of the organic binder, leading to a reduced interface resistance between active sites and electrolytes. This work presents a promising approach to minimize the use of noble metals for large-scale PEMWE applications.
Collapse
Affiliation(s)
- Xiaozan Zhang
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Fei Wu
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueqing Zheng
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yin'an Zhu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Deng Q, Chen S, Wu W, Zhang S, An C, Hu N, Han X. Ultrasound-Assisted Preparation and Performance Regulation of Electrocatalytic Materials. Chempluschem 2024; 89:e202300688. [PMID: 38199955 DOI: 10.1002/cplu.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
With the advancement of scientific research, the introduction of external physical methods not only adds extra freedom to the design of electro-catalytical processes for green technologies but also effectively improves the reactivity of materials. Physical methods can adjust the intrinsic activity of materials and modulate the local environment at the solid-liquid interface. In particular, this approach holds great promise in the field of electrocatalysis. Among them, the ultrasonic waves have shown reasonable control over the preparation of materials and the electrocatalytic process. However, the research on coupling ultrasonic waves and electrocatalysis is still early. The understanding of their mechanisms needs to be more comprehensive and deep enough. Firstly, this article extensively discusses the adhibition of the ultrasonic-assisted preparation of metal-based catalysts and their catalytic performance as electrocatalysts. The obtained metal-based catalysts exhibit improved electrocatalytic performances due to their high surface area and more exposed active sites. Additionally, this article also points out some urgent unresolved issues in the synthesis of materials using ultrasonic waves and the regulation of electrocatalytic performance. Lastly, the challenges and opportunities in this field are discussed, providing new insights for improving the catalytic performance of transition metal-based electrocatalysts.
Collapse
Affiliation(s)
- Qibo Deng
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shuang Chen
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenliu Wu
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cuihua An
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Wu D, Chen Y, Bai Y, Zhu C, Zhang M. One-Dimensional La 0.2Sr 0.8Cu 0.4Co 0.6O 3-δ Nanostructures for Efficient Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:64. [PMID: 38202520 PMCID: PMC10781154 DOI: 10.3390/nano14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Producing oxygen and hydrogen via the electrolysis of water has the advantages of a simple operation, high efficiency, and environmental friendliness, making it the most promising hydrogen production method. In this study, La0.2Sr0.8Cu0.4Co0.6O3-δ (LSCC) nanofibers were prepared by electrospinning to utilize non-noble perovskite oxides instead of noble metal catalysts for the oxygen evolution reaction, and the performance and electrochemical properties of LSCC nanofibers synthesized at different firing temperatures were evaluated. In an alkaline environment (pH = 14, 6 M KOH), the nanofibers calcined at 650 °C showed an overpotential of 209 mV at a current density of 10 mA cm-2 as well as good long-term stability. Therefore, the prepared LSCC-650 NF catalyst shows excellent potential for electrocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Dongshuang Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yidan Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuelei Bai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Chuncheng Zhu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
6
|
Bezzerga D, Haidar EA, Stampfl C, Mir A, Sahnoun M. Ferro-piezoelectricity in emerging Janus monolayer BMX 2 (M = Ga, In and X = S, Se): ab initio investigations. NANOSCALE ADVANCES 2023; 5:1425-1432. [PMID: 36866264 PMCID: PMC9972858 DOI: 10.1039/d2na00597b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Nanoscale materials with inter-correlation characteristics are fundamental for developing high performance devices and applications. Hence theoretical research into unprecedented two-dimensional (2D) materials is crucial for improving understanding, especially when piezoelectricity is merged with other unique properties such as ferroelectricity. In this work, an unexplored 2D Janus family BMX2 (M = Ga, In and X = S, Se) corresponding to group-III ternary chalcogenides has been explored. The structural and mechanical stability, and optical and ferro-piezoelectric properties of BMX2 monolayers were investigated using first-principles calculations. We found that the lack of imaginary phonon frequencies in the phonon dispersion curves establishes the dynamic stability of the compounds. The monolayers BGaS2 and BGaSe2 are indirect semiconductors with bandgaps of 2.13 eV and 1.63 eV, respectively, while BInS2 is a direct semiconductor with a bandgap of 1.21 eV. BInSe2 is a novel zero-gap ferroelectric material with quadratic energy dispersion. All monolayers exhibit a high spontaneous polarization. The optical characteristics of the BInSe2 monolayer show high light absorption ranging from the infrared to the ultraviolet. The BMX2 structures exhibit in-plane and out-of-plane piezoelectric coefficients of up to 4.35 pm V-1 and 0.32 pm V-1. According to our findings, 2D Janus monolayer materials are a promising choice for piezoelectric devices.
Collapse
Affiliation(s)
- Djamel Bezzerga
- Department of Physics, Ahmed Zabana University of Relizane Algeria
- Laboratory of Quantum Physics of Matter and Mathematical Modeling (LPQ3M), University Mustapha Stambouli of Mascara Algeria
| | - El-Abed Haidar
- School of Physics, The University of Sydney New South Wales 2006 Australia
| | - Catherine Stampfl
- School of Physics, The University of Sydney New South Wales 2006 Australia
| | - Ali Mir
- Department of Physics, Ahmed Zabana University of Relizane Algeria
- Department of Physics, Dr Tahar Moulay University of Saida Algeria
| | - Mohammed Sahnoun
- Laboratory of Quantum Physics of Matter and Mathematical Modeling (LPQ3M), University Mustapha Stambouli of Mascara Algeria
| |
Collapse
|