1
|
Pang C, Tan Y, Ling J, Hong L. Synergetic antibacterial nanosheet based on Ti 3C 2T x photothermal therapy and cationic polymer to eradicate drug-resistant bacterial biofilms. NANOSCALE 2024; 16:21856-21868. [PMID: 39495172 DOI: 10.1039/d4nr03888f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Drug-resistant bacteria infection and biofilm formation on the wound still pose a tremendous challenge in post-antibiotic era. It has been proposed that multimode synergetic antibacterial strategies may be employed to eradicate drug-resistant bacteria and biofilms effectively. In this study, we synthesized non-invasive antibacterial two-dimension (2D) composite nanosheet BPG using Ti3C2Tx MXene and cationic borneol-guanidine based polymers (B-PGMA-Gu) via simple electrostatically co-assemble. BPG can target bacteria and efficiently eliminate Gram-positive bacteria Staphylococcus aureus (S. aureus), Gram-negative bacteria Escherichia coli (E. coli), and methicillin-resistant Staphylococcus aureus (MRSA) under 808 nm radiation. By combining the photothermal properties of Ti3C2Tx MXene and the excellent membrane penetration ability of B-PGMA-Gu, MRSA biofilms can be effectively removed at 100 μg mL-1 under laser irradiation, resulting in a bactericidal efficiency of 99.1%. This method offers a more effective and rapid non-antibiotic method for removing biofilms.
Collapse
Affiliation(s)
- Chuming Pang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yingxin Tan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Ling
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Liangzhi Hong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Chen H, Wang Y, Chen X, Wang Z, Wu Y, Dai Q, Zhao W, Wei T, Yang Q, Huang B, Li Y. Research Progress on Ti 3C 2T x-Based Composite Materials in Antibacterial Field. Molecules 2024; 29:2902. [PMID: 38930967 PMCID: PMC11206357 DOI: 10.3390/molecules29122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The integration of two-dimensional Ti3C2Tx nanosheets and other materials offers broader application options in the antibacterial field. Ti3C2Tx-based composites demonstrate synergistic physical, chemical, and photodynamic antibacterial activity. In this review, we aim to explore the potential of Ti3C2Tx-based composites in the fabrication of an antibiotic-free antibacterial agent with a focus on their systematic classification, manufacturing technology, and application potential. We investigate various components of Ti3C2Tx-based composites, such as metals, metal oxides, metal sulfides, organic frameworks, photosensitizers, etc. We also summarize the fabrication techniques used for preparing Ti3C2Tx-based composites, including solution mixing, chemical synthesis, layer-by-layer self-assembly, electrostatic assembly, and three-dimensional (3D) printing. The most recent developments in antibacterial application are also thoroughly discussed, with special attention to the medical, water treatment, food preservation, flexible textile, and industrial sectors. Ultimately, the future directions and opportunities are delineated, underscoring the focus of further research, such as elucidating microscopic mechanisms, achieving a balance between biocompatibility and antibacterial efficiency, and investigating effective, eco-friendly synthesis techniques combined with intelligent technology. A survey of the literature provides a comprehensive overview of the state-of-the-art developments in Ti3C2Tx-based composites and their potential applications in various fields. This comprehensive review covers the variety, preparation methods, and applications of Ti3C2Tx-based composites, drawing upon a total of 171 English-language references. Notably, 155 of these references are from the past five years, indicating significant recent progress and interest in this research area.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yilun Wang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Xuguang Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Zihan Wang
- Department of Computer Science and Technology, China Three Gorges University, Yichang 443002, China
| | - Yue Wu
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qiongqiao Dai
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Wenjing Zhao
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Tian Wei
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qingyuan Yang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Liu L, Zou Y, Xia T, Zhang J, Xiong M, Long L, Wang K, Hao N. A double-quenching paperclip ECL biosensing platform for ultrasensitive detection of antibiotic resistance genes (mecA) based on Ti 3C 2 MXene-Au NPs as a coreactant accelerator. Biosens Bioelectron 2023; 240:115651. [PMID: 37666010 DOI: 10.1016/j.bios.2023.115651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
The global spread of environmental biological pollutants, such as antibiotic-resistant bacteria and their antibiotic resistance genes (ARGs), has emerged as a critical public health concern. It is imperative to address this pressing issue due to its potential implications for public health. Herein, a DNA paperclip probe with double-quenching function of target cyclic cleavage was proposed, and an electrochemiluminescence (ECL) biosensing platform was constructed using Ti3C2 MXene in-situ reduction growth of Au NPs (TCM-Au) as a coreactant accelerator, and applied to the sensitive detection of ARGs. Thanks to the excellent catalytic performance, large surface area and Au-S affinity of TCM-Au, the ECL performance of CdS QDs have been significantly improved. By cleverly utilizing the negative charge of the paperclip nucleic acid probe and its modification group, double-quenching of the ECL signal was achieved. This innovative approach, combined with target cyclic amplification, facilitated specific and sensitive detection of the mecA gene. This biosensing platform manifested highly selective and sensitive determination of mecA genes in the range of 10 fM to 100 nM and a low detection limit of 2.7 fM. The credible detectability and anti-interference were demonstrated in Yangtze river and Aeration tank outlet, indicating its promising application toward pollution monitoring of ARGs.
Collapse
Affiliation(s)
- Liqi Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Zou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tiantian Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiadong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
4
|
Yang R, Wen S, Cai S, Zhang W, Wu T, Xiong Y. MXene-based nanomaterials with enzyme-like properties for biomedical applications. NANOSCALE HORIZONS 2023; 8:1333-1344. [PMID: 37555239 DOI: 10.1039/d3nh00213f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, great progress has been made in nanozyme research due to the rapid development of nanomaterials and nanotechnology. MXene-based nanomaterials have gained considerable attention owing to their unique physicochemical properties. They have been found to have high enzyme-like properties, such as peroxidase, oxidase, catalase, and superoxide dismutase. In this mini-review, we present an overview of the recent progress in MXene-based nanozymes, with emphasis on their synthetic methods, hybridization, bio-catalytic properties, and biomedical applications. The future challenges and prospects of MXene-based nanozymes are also proposed.
Collapse
Affiliation(s)
- Rong Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Wen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangfei Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Ting Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Youlin Xiong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
5
|
Zhang X, Xiong Y, Cai S, Wu T, Lian Z, Wang C, Zhang W, Yang R. Versatile gold-silver-PB nanojujubes for multi-modal detection and photo-responsive elimination against bacteria. Front Chem 2023; 11:1211523. [PMID: 37284578 PMCID: PMC10239827 DOI: 10.3389/fchem.2023.1211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Bacterial infections have become a serious threat to global public health. Nanomaterials have shown promise in the development of bacterial biosensing and antibiotic-free antibacterial modalities, but single-component materials are often less functional and difficult to achieve dual bacterial detection and killing. Herein, we report a novel strategy based on the effective integration of multi-modal bacterial detection and elimination, by constructing the versatile gold-silver-Prussian blue nanojujubes (GSP NJs) via a facile template etching method. Such incorporation of multi-components involves the utilization of cores of gold nanobipyramids with strong surface-enhanced Raman scattering (SERS) activity, the shells of Prussian blue as both an efficient bio-silent SERS label and an active peroxidase-mimic, and functionalization of polyvinyl pyrrolidone and vancomycin, respectively endowing them with good colloidal dispersibility and specificity against S. aureus. The GSP NJs show operational convenience in the SERS detection and excellent peroxidase-like activity for the sensitive colorimetric detection. Meanwhile, they exhibit robust near-infrared photothermal/photodynamic effects, and the photo-promoted Ag+ ions release, ultimately achieving a high antibacterial efficiency over 99.9% in 5 min. The NJs can also effectively eliminate complex biofilms. The work provides new insights into the design of multifunctional core-shell nanostructures for the integrated bacterial detection and therapy.
Collapse
Affiliation(s)
- Xining Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Youlin Xiong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuangfei Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Ting Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Lian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, China
| | - Rong Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Yu J, Zhu D, Qi C, Zhang W. Photothermal characteristic and evaporation efficiency of core-shell Ag@Fe3O4 nanofluids. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Wang L, Li Z. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. BIOSENSORS 2022; 12:1129. [PMID: 36551096 PMCID: PMC9775677 DOI: 10.3390/bios12121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At the current stage, prevention and vaccination are still the most efficient ways to slow down the pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress and research activities in developing smart nanostructured materials for COVID-19 prevention, sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on the development of stimuli-responsive nanostructures for high-performance biosensing and detection of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some existing challenges are also provided, which need continuous efforts in creating smart nanostructured materials for coronavirus biosensing, treatment, and vaccination.
Collapse
Affiliation(s)
- Lifeng Wang
- Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Zhiwei Li
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|