Mahmoud MA, Alsehli BR, Alotaibi MT, Hosni M, Shahat A. A comprehensive review on the application of semiconducting materials in the degradation of effluents and water splitting.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024;
31:3466-3494. [PMID:
38141122 PMCID:
PMC10794432 DOI:
10.1007/s11356-023-31353-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In this comprehensive review article, we delve into the critical intersection of environmental science and materials science. The introduction sets the stage by emphasizing the global water shortage crisis and the dire consequences of untreated effluents on ecosystems and human health. As we progress into the second section, we embark on an intricate exploration of piezoelectric and photocatalytic principles, illuminating their significance in wastewater treatment and sustainable energy production. The heart of our review is dedicated to a detailed analysis of the detrimental impacts of effluents on human health, underscoring the urgency of effective treatment methods. We dissected three key materials in the realm of piezo-photocatalysis: ZnO-based materials, BaTiO3-based materials, and bismuth-doped materials. Each material is scrutinized for its unique properties and applications in the removal of pollutants from wastewater, offering a comprehensive understanding of their potential to address this critical issue. Furthermore, our exploration extends to the realm of hydrogen production, where we discuss various types of hydrogen and the role of piezo-photocatalysis in generating clean and sustainable hydrogen. By illuminating the synergistic potential of these advanced materials and technologies, we pave the way for innovative solutions to the pressing challenges of water pollution and renewable energy production. This review article not only serves as a valuable resource for researchers and scholars in the fields of material science and environmental engineering but also underscores the pivotal role of interdisciplinary approaches in addressing complex global issues.
Collapse