1
|
Debnath S, Giri S, Mani G. Selective synthesis of the missing tiara-like Ni 10, Ni 5 and Ni 6 thiolates by the C-S bond cleavage of bis(thioether) molecules with a DFT study. Dalton Trans 2024; 53:14875-14886. [PMID: 39189101 DOI: 10.1039/d4dt02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A series of new bis(phenylthioether) and bis(benzylthioether) compounds (L1-L5) having hexahydropyrimidine, imidazolidine and dihydroperimidine backbones were synthesized. Instead of giving NHC complexes, these compounds undergo facile C-S bond cleavages upon treatment with Ni(II) salts to selectively give new toroidal Ni(II) thiolates: [Ni10(SPh)20] (1) and [Ni5(SCH2Ph)10] (5), and the known [Ni6(SCH2Ph)12] (8), as confirmed by single crystal X-ray diffraction studies. By-products such as RSSR (R = Ph and CH2Ph) and partially C-S bond cleaved starting compounds were isolated or detected as well from these reactions. The C-S bond cleavage does not take place with L5 having the dihydroperimidine backbone and a plausible mechanism is proposed based on by-products isolated or detected. DFT calculations give insights into the electronic structures of these ring systems and the nature of bonding with which a dichloromethane is present inside the cavity of 1. Experimentally observed absorption spectra of 1, 5 and 8 match with the calculated spectra.
Collapse
Affiliation(s)
- Suparno Debnath
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India.
| | - Sandip Giri
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India.
| | - Ganesan Mani
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India.
| |
Collapse
|
2
|
Xiang H, Cheng R, Ruan C, Meng C, Gan Y, Cheng W, Zhao Y, Xu CQ, Li J, Yao C. A homologous series of macrocyclic Ni clusters: synthesis, structures, and catalytic properties. NANOSCALE 2024; 16:4563-4570. [PMID: 38305474 DOI: 10.1039/d3nr06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Due to their intriguing ring structures and promising applications, nickel-thiolate clusters, such as [Nin(SR)2n] (n = 4-6), have attracted tremendous interest. However, investigation of the synthesis, structures, and properties of macrocyclic Nin clusters (n > 8) has been seriously impeded. In this work, a homologous series of macrocyclic nickel clusters, Nin(4MPT)2n (n = 9-12), was fabricated by using 4-methylphenthiophenol (4MPT) as the ligand. The structures and compositions of the clusters were determined by single-crystal X-ray diffraction (SXRD) in combination with electrospray ionization mass spectrometry (ESI-MS). Experimental results and theoretical calculations show that the electronic structures of the clusters do not change significantly with the increase of Ni atoms. The coordination interactions between Ni and S atoms in [NiS4] subunits are proved to play a crucial rule in the remarkable stability of Ni clusters. Finally, these clusters display excellent catalytic activity towards the reduction of p-nitrophenol, and a linear correlation between catalytic activity and ring size was revealed. The study provides a facile approach to macrocyclic homoleptic nickel clusters, and contributes to an in-depth understanding of the structure-property correlations of nickel clusters at the atomic level.
Collapse
Affiliation(s)
- Huixin Xiang
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Ranran Cheng
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenhao Ruan
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Changqing Meng
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuzheng Gan
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wanyu Cheng
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Chuanhao Yao
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Okada T, Kawawaki T, Takemae K, Tomihari S, Kosaka T, Niihori Y, Negishi Y. Tiara-like Hexanuclear Nickel-Platinum Alloy Nanocluster. J Phys Chem Lett 2024; 15:1539-1545. [PMID: 38299566 PMCID: PMC10860137 DOI: 10.1021/acs.jpclett.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Tiara-like metal nanoclusters (TNCs) have attracted a great deal of attention because of their high stability and easy synthesis under atmospheric conditions as well as their high activity in various catalytic reactions. Alloying is one of the methods that can be used to control the physicochemical properties of nanoclusters, but few studies have reported on alloy TNCs. In this study, we synthesized alloy TNCs [NixPt6-x(PET)12, where x = 1-5 and PET = 2-phenylethanethiolate] consisting of thiolate, nickel (Ni), and platinum (Pt). We further evaluated the stability, geometric structure, and electronic structure by high-performance liquid chromatography and density functional theory calculations. The results revealed that NixPt6-x(PET)12 has a distorted structure and is therefore less stable than single-metal TNCs.
Collapse
Affiliation(s)
- Tomoshige Okada
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Tokuhisa Kawawaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| | - Kana Takemae
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Shiho Tomihari
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Taiga Kosaka
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Yoshiki Niihori
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| |
Collapse
|
4
|
Xu T, Wang E, Liu S, Wei Z, Yin P, Sun J, Xu WW, Song Y. Large-scale synthesis, mechanism, and application of a luminescent copper hydride nanocluster. Dalton Trans 2023. [PMID: 38010928 DOI: 10.1039/d3dt02595k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Elucidating the structure-property relationships of ultra-small metal nanocluster with basic nuclear is of great significance for understanding the evolution mechanism in both the structures and properties of polynuclear metal nanoclusters. In this study, an ultra-small copper hydride (CuH for short) nanocluster was simply synthesized with high yield, and the large-scale preparation was also achieved. Single crystal X-ray diffractometer (SC-XRD) analysis shows that this copper NC contains a tetrahedral Cu4 core co-capped by four PPh2Py ligands and two Cl in which the existence of the central H atom in tetrahedron was further identified experimentally and theoretically. This CuH nanocluster exhibits bright yellow emission, which is proved to be the mixture of phosphorescence and fluorescence by the sensitivity of both emission intensity and lifetime to O2. Furthermore, the temperature-dependent emission spectra and density functional theory (DFT) calculations suggest that the luminescence of CuH mainly originates from the metal-to-ligand charge transfer and cluster-centered triplet excited states. This work offers new insights into understanding the structure-property relationship of basic nuclear CuH nanocluster.
Collapse
Affiliation(s)
- Tingting Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Shuai Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Zhezhen Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Peiqun Yin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jianan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Yongbo Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
5
|
Kawawaki T, Negishi Y. Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Trans 2023; 52:15152-15167. [PMID: 37712891 DOI: 10.1039/d3dt02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Metal nanoclusters (NCs) with sizes of approximately 2 nm or less have different physical/chemical properties from those of the bulk metals owing to quantum size effects. Metal NCs, which can be size-controlled and heterometal doped at atomic accuracy, are expected to be the next generation of important materials, and new metal NCs are reported regularly. However, compared with conventional materials such as metal complexes and relatively large metal nanoparticles (>2 nm), these metal NCs are still underdeveloped in terms of evaluation and establishment of application methods. Electrochemical measurements are one of the most widely used methods for synthesis, application, and characterisation of metal NCs. This review summarizes the basic knowledge of the electrochemistry and experimental techniques, and provides examples of the reported electronic states of thiolate-protected gold NCs elucidated by electrochemical approaches. It is expected that this review will provide useful information for researchers starting to study metal NCs.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|