Li J, Tanaka H, Imagawa T, Tsushima T, Nakamoto M, Tan J, Yoshida H. Ethynyl-B(dan) in [3+2] Cycloaddition and Larock Indole Synthesis: Synthesis of Stable Boron-Containing Heteroaromatic Compounds.
Chemistry 2024;
30:e202303403. [PMID:
38109084 DOI:
10.1002/chem.202303403]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 12/19/2023]
Abstract
The cycloaddition of nitrile oxides with ethynyl-B(dan) (dan=naphthalene-1,8-diaminato) allowed the facile preparation of diverse isoxazolyl-B(dan) compounds, all of which displayed excellent protodeborylation-resistant properties. The dan-installation on the boron center proves vital to the high stability of the products as well as the perfect regioselectivity arising from hydrogen bond-directed orientation in the cycloaddition. The diminished boron-Lewis acidity of ethynyl-B(dan) also renders it amenable to azide-alkyne cycloaddition, Larock indole synthesis and related heteroannulations. The obtained boron-containing triazole, indoles, benzofuran and indenone exhibit sufficient resistance toward protodeborylation. Despite the commonly accepted transmetalation-inactive property derived from the diminished Lewis acidity, the synthesized heteroaryl-B(dan) compound was still found to be convertible to the oligoarene via sequential Suzuki-Miyaura coupling.
Collapse