Ghosh M, Sahu S, Saha S, Maji MS. Construction of C2-indolyl-quaternary centers by branch-selective allylation: enabling concise total synthesis of the (±)-mersicarpine alkaloid.
Chem Sci 2024;
15:1789-1795. [PMID:
38303951 PMCID:
PMC10829033 DOI:
10.1039/d3sc04732f]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024] Open
Abstract
Herein we report a branch-selective allylation strategy for accessing C2-indolyl-all-carbon quaternary centers using allylboronic acids. This approach boasts broad functional group tolerance, scalability, and relies on easily accessible allyl alcohol precursors. Importantly, the C3-position of the indole remains free, offering a handle for further synthetic refinement. Mechanistic pathways, corroborated by density functional theory (DFT), suggest the involvement of an indolenine intermediate and a Zimmerman-Traxler-like transition state during allylboration. Demonstrating its efficacy, the method was applied to the total synthesis of the (±)-mersicarpine alkaloid and enabled formal synthesis of additional alkaloids, such as (±)-scholarisine G, (±)-melodinine E, and (±)-leuconoxine.
Collapse