1
|
Kaur R, Dilip H, Kirubakaran S, Babu SA. Synthesis of biaryl-based carbazoles via C-H functionalization and exploration of their anticancer activities. Org Biomol Chem 2024; 22:8916-8944. [PMID: 39404867 DOI: 10.1039/d4ob01392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The synthesis of a library of new biaryl-based carbazoles via bidentate directing group-assisted C-H functionalization and preliminary screening of the anticancer properties of biaryl-based carbazoles is reported. While various classes of modified carbazoles are known for their applications in materials and medicinal chemistry, to our knowledge, the biological activities of designed biaryl-based carbazoles have been rarely known. Given the prominence of carbazoles in research in medicinal chemistry, we envisioned the scope for new scaffolds of carbazole-based biaryl structures. We screened the synthesized biaryl-based carbazoles for their anticancer properties against various cancer cell lines such as HeLa (cervical cancer), HCT116 (colon cancer), MDA-MB-231 and MDA-MB-468 (breast cancer). In addition, the hits were also tested in the human embryonic kidney cell line HEK293T to assess their impact on the viability of normal human cells in the presence of these compounds. In this preliminary study, we identified some of the biaryl-based carbazoles as lead compounds with anticancer activities.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge, City, Sector 81, SAS Nagar, Manauli P. O., Mohali, Punjab, 140306, India.
| | - Haritha Dilip
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India.
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge, City, Sector 81, SAS Nagar, Manauli P. O., Mohali, Punjab, 140306, India.
| |
Collapse
|
2
|
Dalal A, Bodak S, Babu SA. Picolinamide-assisted ortho-C-H functionalization of pyrenylglycine derivatives using aryl iodides. Org Biomol Chem 2024; 22:1279-1298. [PMID: 38258893 DOI: 10.1039/d3ob01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chemical transformations involving the pyrenylglycine motif (an unnatural amino acid) and practical methods toward it are seldom known. This work aimed at developing a method for synthesizing novel pyrenylglycine (pyrene-based glycine) unnatural amino acid derivatives. To realize this, initially, a new pyrenylglycine substrate possessing the picolinamide moiety was assembled via the Ugi multicomponent reaction. The picolinamide moiety linked to amine substrates is a well-known bidentate directing group for accomplishing the site-selective γ-C-H functionalization of amines. Subsequently, it was aimed at using a Pd(II)-catalyzed bidentate directing group-aided γ-C-H arylation strategy for generating a wide range of unprecedented examples of C(2)-H arylated pyrenylglycines. Accordingly, pyrenylglycine possessing the picolinamide moiety was subjected to Pd(II)-catalyzed C(2)-H arylation in the non-K-region to afford a library of C(2)-arylated pyrenylglycines (π-extended pyrenes). Additionally, pyrenylglycine-based small peptides were assembled using C(2)-arylated pyrenylglycines. The X-ray structure of a representative compound was obtained, which corroborated the structure of pyrenylglycine and the regioselectivity of C(2)-H arylation of the pyrene in the non-K-region.
Collapse
Affiliation(s)
- Arup Dalal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Subhankar Bodak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
3
|
Suwasia S, Venkataramani S, Babu SA. Pd(II)-catalyzed coupling of C-H bonds of carboxamides with iodoazobenzenes toward modified azobenzenes. Org Biomol Chem 2023; 21:1793-1813. [PMID: 36744837 DOI: 10.1039/d2ob02322a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper, we report a synthetic protocol for the construction of biaryl motif-based or π-extended azobenzene and alkylated azobenzene derivatives via the Pd(II)-catalyzed bidentate directing group (DG)-aided C-H activation and functionalization strategy. In the past, the synthesis of biaryl motif-based azobenzenes was accomplished through the traditional cross-coupling reaction involving organometallic reagents and aryl halides or equivalent coupling partners. We have shown the direct coupling of C-H bonds of aromatic/aliphatic carboxamides (possessing a DG) with iodoazobenzenes as the coupling partners through the Pd(II)-catalyzed bidentate DG-aided, site-selective C-H functionalization method. Azobenzene-containing compounds are a versatile class of photo-responsive molecules that have found applications across branches of chemical, biological and materials sciences and are prevalent in medicinally relevant molecules. Accordingly, the synthesis of new and functionalized azobenzene-based scaffolds has been an attractive topic of research. Although the classical methods are efficient, they need pre-functionalized starting materials. This protocol involving the Pd(II)-catalyzed, directing group-aided site-selective C-H arylation of aromatic and aliphatic carboxamides using iodoazobenzene as the coupling partner affording azobenzene-based carboxamides is an additional route and also a contribution towards enriching the library of modified azobenzenes. We have also shown the photoswitching properties of representative compounds synthesized via the Pd(II)-catalyzed directing group-aided site-selective C-H functionalization method.
Collapse
Affiliation(s)
- Sonam Suwasia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
4
|
Padmavathi R, Babu SA. Pd(II)-catalyzed selective β-C-H functionalization of azobenzene carboxamides. Org Biomol Chem 2023; 21:2689-2694. [PMID: 36691730 DOI: 10.1039/d2ob02261c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report a Pd(II)-catalyzed bidentate directing group 8-aminoquinoline-aided, site-selective β-C-H functionalization protocol for assembling modified azobenzene carboxamides. Considering the importance of azobenzenes in chemical sciences, this paper reports a new route for enriching the library of modified azobenzene motifs.
Collapse
Affiliation(s)
- Rayavarapu Padmavathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
5
|
Aggarwal Y, Padmavathi R, Singh P, Arulananda Babu S. Pd(II)‐Catalyzed, γ‐C(sp2)‐H Alkoxylation in α‐Methylbenzylamine, Phenylglycinol, 3‐Amino‐3‐Phenylpropanol Toward Enantiopure Aryl Alkyl Ethers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yashika Aggarwal
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Prabhakar Singh
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
6
|
Tomar R, Suwasia S, Choudhury AR, Venkataramani S, Babu SA. Azobenzene-based unnatural amino acid scaffolds via a Pd( ii)-catalyzed C(sp 3)–H arylation strategy. Chem Commun (Camb) 2022; 58:12967-12970. [DOI: 10.1039/d2cc04870a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azobenzene-based unnatural amino acid motifs were constructed via the Pd(ii)-catalyzed diastereoselective β-C(sp3)–H arylation and Mills azo coupling tactics.
Collapse
Affiliation(s)
- Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| | - Sonam Suwasia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| |
Collapse
|