1
|
Xiao J, Jiang D, Wu X, Li J, Liu K, Huang B, Wang W. Carbene-induced ring-opening reactions of five-/six-membered cyclic ethers: expanding the frontiers of functional group introduction and molecular architecture construction. Org Biomol Chem 2025. [PMID: 39840541 DOI: 10.1039/d4ob01923g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The multi-component ring-opening reactions of cyclic ethers offer an efficient strategy for the rapid introduction of multiple functional groups and the construction of complex molecular architectures. Despite the minimal ring strain in five- and six-membered rings presenting a significant challenge for ring-opening, advancements have been made. Traditional acid-catalyzed pathways have been complemented by a novel approach involving carbene-induced oxonium intermediate formation, which has emerged in recent years and expanded the selectivity of ring-opening reactions. This review outlines the evolution of carbene-induced ring-opening reactions of cyclic ethers over the past two decades, focusing on the development of carbene precursors and the pathways of carbene formation. The insights provided are anticipated to inform and inspire the creation of new carbene sources and the advancement of oxonium intermediates, thereby contributing to the field's progress.
Collapse
Affiliation(s)
- Jun Xiao
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Dandan Jiang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Xiujuan Wu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Juanhua Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Wei Wang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
2
|
Miao K, Zhang J, Chen J, Zhang LB, Li M, Wen L, Guo W. Electrochemical Desaturation and β-Thiocyanation of Cyclic Amides. Org Lett 2025; 27:186-190. [PMID: 39698798 DOI: 10.1021/acs.orglett.4c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The site-selective functionalization of cyclic amides provides an attractive protocol for the synthesis of valuable molecules. We report herein an electrochemical desaturation and β-thiocyanation of cyclic amides under external oxidant-free conditions. This method exhibits broad functional group tolerance, excellent selectivity, mild reaction conditions and can be applied for late-stage functionalization of bioactive molecules. Mechanistic studies indicate that an enamide intermediate might be involved.
Collapse
Affiliation(s)
- Kaili Miao
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Jin Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Jiaxin Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Lin-Bao Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Ming Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Lirong Wen
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Ma Y, Yu P, Qin R, He R, Zeng L, Shi L, Sun S, Liang D. Electrophotocatalytic Thiocyanation and Sulfonylation Cyclization of Unactivated Alkenes. J Org Chem 2025; 90:598-613. [PMID: 39695375 DOI: 10.1021/acs.joc.4c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
We report an electrophotocatalytic process that enables the thiocyanation and sulfonylation/cyclization of alkenes. It is applicable to a wide range of unactivated alkenes, using the inexpensive photocatalyst 2,4,6-triphenylpyrylium tetrafluoroborate (TPPT) to produce a diverse array of heterocycles containing sulfonyl and thiocyano groups with good functional group tolerance. The protocol operates under mild, chemical oxidant- and transition-metal-free, with a broad scope of substrates. Preliminary mechanistic studies suggest that the reaction involves a combination of electrolysis and the reductive quenching photocatalytic cycle of TPPT.
Collapse
Affiliation(s)
- Yingchun Ma
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Ruoyu Qin
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Run He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Li Zeng
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Shaoguang Sun
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
- Medical College, Panzhihua University, Panzhihua 617000, P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| |
Collapse
|
4
|
Piedra HF, Plaza M. Visible-light-driven synthesis of alkenyl thiocyanates: novel building blocks for assembly of diverse sulfur-containing molecules. Chem Sci 2024:d4sc06550f. [PMID: 39483256 PMCID: PMC11523809 DOI: 10.1039/d4sc06550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
The first visible-light-induced protocol for the general preparation of alkenyl thiocyanates from alkenyl bromides is presented. The reaction is simple, proceeds under very mild conditions and demonstrates broad functional group tolerance. Additionally, a flow protocol was developed to enable efficient scale-up of alkenyl thiocyanate synthesis, further enhancing the practicality and value of the method. Importantly, these alkenyl thiocyanates serve as valuable building blocks for the construction of diverse families of sulfur-containing molecules through trifluoromethylations, cycloadditions, oxidations, and C-S or P-S bond forming reactions.
Collapse
Affiliation(s)
- Helena F Piedra
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
5
|
Karthiga AR, Divyabharathi S, Shalo RR, Rajeswari K, Vidhyasagar T, Selvanayagam S. Crystal structure, Hirshfeld surface analysis, DFT optimized mol-ecular structure and the mol-ecular docking studies of 1-[2-(cyano-sulfan-yl)acet-yl]-3-methyl-2,6-bis-(4-methyl-phen-yl)piperidin-4-one. Acta Crystallogr E Crystallogr Commun 2024; 80:1014-1019. [PMID: 39372181 PMCID: PMC11451485 DOI: 10.1107/s2056989024008508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024]
Abstract
The two mol-ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter-molecular C-H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter-molecular inter-actions were qu-anti-fied and analysed using Hirshfeld surface analysis. The mol-ecular structure optimized by density functional theory (DFT) at the B3LYP/6-311++G(d,p)level is compared with the experimentally determined mol-ecular structure in the solid state.
Collapse
Affiliation(s)
- A. R. Karthiga
- Department of Chemistry Annamalai University, Annamalainagar Chidambaram 608 002 India
| | - S. Divyabharathi
- Department of Chemistry Annamalai University, Annamalainagar Chidambaram 608 002 India
| | - R. Reshwen Shalo
- Department of Chemistry Annamalai University, Annamalainagar Chidambaram 608 002 India
| | - K. Rajeswari
- Department of Chemistry Annamalai University, Annamalainagar Chidambaram 608 002 PG & Research Department of Chemistry Government Arts College Chidambaram 608 102 India
| | - T. Vidhyasagar
- Department of Chemistry Annamalai University, Annamalainagar Chidambaram 608 002 India
| | - S. Selvanayagam
- PG & Research Department of Physics, Government Arts College, Melur 625 106, India
| |
Collapse
|
6
|
Bagad PK, Darole RS, Krishna GR, Senthilkumar B. Highly Selective C-N and C-S Dual Functionalization of 1,3-Dicarbonyl Derivatives Using TBHP as an Oxidant. J Org Chem 2024; 89:9371-9380. [PMID: 38913603 DOI: 10.1021/acs.joc.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A direct electrosynthesis/photocatalyst-free, atom-economical, and efficient method for the selective synthesis of (E)-3-amino-2-thiocyanato-α,β-unsaturated carbonyl compounds is described through a given protocol. The present approach features the use of inexpensive ammonium thiocyanate to achieve dual functionalization of 1,3-dicarbonyl compounds using TBHP as an oxidant, providing a rapid and practical route to the selective formation of both C-N and C-S bonds via a radical process. This method offers a broad substrate scope with excellent yield and allows for further exploration of the products to construct heterocyclic compounds and other functionalities.
Collapse
Affiliation(s)
- Pooja K Bagad
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ratanamala S Darole
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - G Rama Krishna
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Beeran Senthilkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
7
|
Hua R, Wang Q, Yin H, Chen FX. Organophotocatalytic Remote Thiocyanation Reaction via Ring-Opening Functionalization of Cycloalkanols. Chemistry 2024; 30:e202400453. [PMID: 38634800 DOI: 10.1002/chem.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
The remote C(sp3)-SCN bond formation via ring-opening functionalization of cycloalkanols with N-thiocyanatosaccharin as the precursor of SCN radicals and pyrylium salt as the organic photocatalyst under visible light has been developed. Thus, various terminal keto thiocyanates were prepared without transition metals and oxidants in moderate to good yields. The simplicity, wide substrate scope and mild conditions feature its synthetic application capability.
Collapse
Affiliation(s)
- Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
8
|
Wang Q, Shao C, Hua R, Yin H, Chen FX. Me 3SiBr-promoted cascade electrophilic thiocyanation/cyclization of ortho-alkynylanilines to synthesize indole derivatives. Org Biomol Chem 2024; 22:4031-4035. [PMID: 38690868 DOI: 10.1039/d4ob00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A Lewis acid-promoted electrophilic thiocyanation/cyclization of ortho-alkynylanilines for the synthesis of indole derivatives has been developed. The reaction utilizes Me3SiBr as the Lewis acid and N-thiocyanatosuccinimide as the thiocyanation reagent. A series of 2-aryl-3-thiocyanato indoles were prepared in moderate to high yields under mild conditions without metals and oxidants. It provides an efficient protocol for the construction of the indole skeleton and C-SCN and C-N bonds in one step as well.
Collapse
Affiliation(s)
- Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| |
Collapse
|
9
|
Shi SH, Li HY, Liu HY, Tian R, Zhu HT. Redox Relay-Induced C-S Radical Cross-Coupling Strategy: Application in Nontraditional Site-Selective Thiocyanation of Quinoxalinones. J Org Chem 2024; 89:6826-6837. [PMID: 38669146 DOI: 10.1021/acs.joc.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Oxidative cross-coupling is a powerful strategy to form C-heteroatom bonds. However, oxidative cross-coupling for constructing C-S bond is still a challenge due to sulfur overoxidation and poisoning transition-metal catalysts. Now, electrochemical redox relay using sulfur radicals formed in situ from inorganic sulfur source offers a solution to this problem. Herein, electrochemical redox relay-induced C-S radical cross-coupling of quinoxalinones and ammonium thiocyanate with bromine anion as mediator is presented. The electrochemical redox relay comprised initially the formation of sulfur radical via indirect electrochemical oxidation, simultaneous electrochemical reduction of the imine bond, electro-oxidation-triggered radical coupling involving dearomatization-rearomatization, and the reformation of the imine bond through anodic oxidation. Applying this strategy, various quinoxalinones bearing multifarious electron-deficient/-rich substituents at different positions were well compatible with moderate to excellent yields and good steric hindrance compatibility under constant current conditions in an undivided cell without transition-metal catalysts and additional redox reagents. Synthetic applications of this methodology were demonstrated through gram-scale preparation and follow-up transformation. Notably, such a unique strategy may offer new opportunities for the development of new quinoxalinone-core leads.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hao-Yu Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hao-Yang Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Rui Tian
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
10
|
Karmaker PG, Yang X. Recent Advancement on the Indirect or Combined Alternative Thiocyanate Sources for the Construction of S-CN Bonds. CHEM REC 2024; 24:e202300312. [PMID: 38085121 DOI: 10.1002/tcr.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Indexed: 03/10/2024]
Abstract
The process of thiocyanation is a notable chemical conversion owing to the extensive range of applications associated with thiocyanate compounds in the field of organic chemistry. In past centuries, the thiocyanation reaction incorporated metal thiocyanates or thiocyanate salts as sources of thiocyanate, which are environmentally detrimental and undesirable. In recent literature, there have been numerous instances where combined or indirect alternative sources of thiocyanate have been employed as agents for thiocyanation, showcasing their noteworthy applications. The present literature review focuses on elucidating the ramifications associated with the utilization of indirect or combined alternative sources of thiocyanate in various thiocyanation reactions.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| |
Collapse
|
11
|
Vigier J, Gao M, Jubault P, Lebel H, Besset T. Divergent process for the catalytic decarboxylative thiocyanation and isothiocyanation of carboxylic acids promoted by visible light. Chem Commun (Camb) 2023; 60:196-199. [PMID: 38047933 DOI: 10.1039/d3cc04624a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A divergent photoinduced selective synthesis of thiocyanate and isothiocyanate derivatives from readily available carboxylic acids was developed using N-thiocyanatosaccharin and a catalytic amount of base or acid. This molecular editing strategy allowed the functionalization of bioactive compounds. A mechanism for the transformation was proposed based on control experiments.
Collapse
Affiliation(s)
- Jordan Vigier
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Mélissa Gao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Hélène Lebel
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC, H3C 3J7, Canada.
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| |
Collapse
|
12
|
Patel K, Oginetz L, Marek I. Highly Diastereoselective Preparation of Tertiary Alkyl Thiocyanates en Route to Thiols by Stereoinvertive Nucleophilic Substitution at Nonclassical Carbocations. Org Lett 2023; 25:8474-8477. [PMID: 37982581 DOI: 10.1021/acs.orglett.3c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An effective InBr3-catalyzed nucleophilic thiocyanation of cyclopropyl alcohols has been developed. The reaction takes place at the quaternary carbon stereocenter of the cyclopropyl carbinol with a complete inversion of configuration, offering a novel pathway for the creation of complex tertiary alkyl thiocyanates with high diastereopurity. These substitution reactions proceed under mild reaction conditions and tolerate several functional groups. Additionally, thiocyanates were converted to thiols using lithium aluminum hydride.
Collapse
Affiliation(s)
- Kaushalendra Patel
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Lior Oginetz
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
13
|
Yan Q, Chen S, Fan J, Li Z. Recent advances in radical thiocyanation cyclization or spirocyclization reactions. Org Biomol Chem 2023; 21:9112-9122. [PMID: 37986647 DOI: 10.1039/d3ob01659e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Organic thiocyanates are valuable biological moities and drug-building blocks. They can also transform effectively into thioethers, thiols, alkynyl thioethers, and thiocarbamates in synthetic chemistry. With respect to the merits of thiocyanates, many chemists and our research team have developed diverse strategies to access SCN-revised heterocycles/spirocycles via an effective radical cyclization process. Hence, this review article first describes the importance/application of thiocyanates. Subsequently, it summarizes the reaction conditions, substrate scopes, and plausible mechanism, respectively, of the excellent work stated above.
Collapse
Affiliation(s)
- Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Shiliu Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jie Fan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
14
|
Li Y, Castañeda-Bagatella DM, Kakkad D, Ai Y, Chen H, Champagne PA. Synthetic and mechanistic study on the conjugate isothiocyanation of enones with trimethylsilyl isothiocyanate. Org Biomol Chem 2023. [PMID: 38009326 DOI: 10.1039/d3ob01710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alkyl isothiocyanates (R-NCS) have pharmacological applications and provide a synthetic handle to various functional groups including thioureas. There are however few methods to access alkyl isothiocyanates through the creation of the C-N bond. We have developed a simple approach for the conjugate isothiocyanation of enones by trimethylsilyl isothiocyanate (TMSNCS), which proceeds through the 1,4-addition of the weak isothiocyanate nucleophile to activated enones in the absence of external promoters. This method avoids the direct use of highly toxic acids and bases, produces β-isothiocyanato carbonyl products in yields of 87-98% under mild conditions (less than 6 hours at 0 °C), and displays wide functional group tolerance. Density functional theory calculations highlighted competing cationic and anionic mechanisms, where the enone activation by the TMSNCS reagent is accelerated in protic solvents. The selective formation of the isothiocyanate vs. thiocyanate isomers is explained by the thermodynamically-controlled nature of the reaction in which only the conjugate isothiocyanation is exergonic.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Diana M Castañeda-Bagatella
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Dhyeyi Kakkad
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Yongling Ai
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
15
|
Li Y, Yang H, Ma Y, Cao Y, Xu D, Liu X, Xu G. Discovery of Novel Pyrazol-5-yl-benzamide Derivatives Containing a Thiocyanato Group as Broad-Spectrum Fungicidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17700-17712. [PMID: 37939232 DOI: 10.1021/acs.jafc.3c04869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In an effort to promote the development of new fungicides, a series of 48 novel N-(1-methyl-4-thiocyanato-1H-pyrazol-5-yl)-benzamide derivatives A1-A36 and B1-B12 were designed and synthesized by incorporating a thiocyanato group into the pyrazole ring, and their fungicidal activities were evaluated against Sclerotinia sclerotiorum, Valsa mali, Botrytis cinerea, Rhizoctonia solani, and Phytophthora capsici. In the in vitro antifungal/antioomycete assay, many of the target compounds exhibited good broad-spectrum fungicidal activities. Among them, compound A36 displayed the best antifungal activity against V. mali with an EC50 value of 0.37 mg/L, which was significantly higher than that of the positive controls fluxapyroxad (13.3 mg/L) and dimethomorph (10.3 mg/L). Meanwhile, compound B6 exhibited the best antioomycete activity against P. capsici with an EC50 value of 0.41 mg/L, which was higher than that of azoxystrobin (29.2 mg/L) but lower than that of dimethomorph (0.13 mg/L). Notably, compound A27 displayed broad-spectrum inhibitory activities against V. mali, B. cinerea, R. solani, S. sclerotiorum, and P. capsici with respective EC50 values of 0.71, 1.44, 1.78, 0.87, and 1.61 mg/L. The in vivo experiments revealed that compounds A27 and B6 presented excellent protective and curative efficacies against P. capsici, similar to that of the positive control dimethomorph. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed that compound B6 could change the mycelial morphology and severely damage the ultrastructure of P. capsici. The results of the in vitro SDH enzymatic inhibition experiments indicated that compounds A27 and B6 could effectively inhibit the activity of P. capsici SDH (PcSDH). Furthermore, molecular docking analysis demonstrated significant hydrogen bonds and Pi-S bonding between the target compounds and the key amino acid residues of PcSDH, which could explain the probable mechanism of action. Collectively, these studies provide a valuable approach to expanding the fungicidal spectrum of pyrazol-5-yl-benzamide derivatives.
Collapse
Affiliation(s)
- Yantao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Han Yang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yidan Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Cao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| |
Collapse
|
16
|
Wang M, Li Y, Yang Y, Tao H, Mustafa G, Meng F, Sun B, Wang J, Zhao Y, Zhang F, Cheng K, Wang Q. Biofortification of health-promoting glucosinolates in cruciferous sprouts along the whole agro-food chain. Trends Food Sci Technol 2023; 140:104164. [DOI: 10.1016/j.tifs.2023.104164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
17
|
Sharma A, Gola AK, Pandey SK. Straightforward access to α-thiocyanoketones and thiazoles from sulfoxonium ylides. Chem Commun (Camb) 2023; 59:10247-10250. [PMID: 37458384 DOI: 10.1039/d3cc02401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient, versatile, and metal-free strategies for synthesizing α-thiocyanoketones and thiazoles from β-ketosulfoxonium ylides and ammonium thiocyanate have been described. Due to its simplicity, benign reaction conditions, excellent chemoselectivity, and high yield, this method represents a unique approach for divergent synthesis. Finally, the potential value of the developed methods is demonstrated via large-scale reactions and synthesis of Fanetizole, an anti-inflammatory drug.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
18
|
Hu X, Guo H, Jiang H, Zheng R, Zhou Y, Wang L. Visible-light-induced C(sp 3)-H thiocyanation of pyrazolin-5-ones: a practical synthesis of 4-thiocyanated 5-hydroxy-1 H-pyrazoles. Org Biomol Chem 2023; 21:2232-2235. [PMID: 36810647 DOI: 10.1039/d3ob00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A direct, aerobic and visible light photocatalytic approach to synthesize 4-thiocyanated 5-hydroxy-1H-pyrazoles via cross-coupling of pyrazolin-5-ones with ammonium thiocyanate is described. Under redox-neutral and metal-free conditions, a series of 4-thiocyanated 5-hydroxy-1H-pyrazoles could be easily and efficiently obtained in good to high yields by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source.
Collapse
Affiliation(s)
- Xiurong Hu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Haichang Guo
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Huajiang Jiang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Renhua Zheng
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Yaqin Zhou
- Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| | - Lei Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China. .,Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| |
Collapse
|
19
|
Jia F, Sang T, He J, Liu Y, Liu J, Ma X, Liu P. K2S2O8-promoted C3-thiocyanation of pyrazole [1,5-a] pyrimidine-7-amines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
20
|
Electrochemical oxythiocyanation of ortho-olefinic amides: access to diverse thiocyanated benzoxazines. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|