1
|
Singh G, Rajeshkumar V. CBr 4-Catalyzed Substituent-Dependent Michael Addition/Paal-Knorr Cyclization of Indole with α,β-Unsaturated Ketones. Chem Asian J 2025; 20:e202401445. [PMID: 39828601 DOI: 10.1002/asia.202401445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
We report CBr4 catalyzed Michael addition of indole to α,β-unsaturated ketones for the synthesis of β-indolylketones through halogen bonding catalysis. This reaction is compatible with a diverse range of chalcones, including drug-derived chalcones containing sensitive functional groups such as amides, yielding the addition products in good yields. Additionally, 3-indolyl furanoid motifs have been synthesized through the Michael addition followed by Paal-Knorr cyclization by utilizing various unsymmetrical 1,4-enediones in a one-pot process with good yields.
Collapse
Affiliation(s)
- Gargi Singh
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Telangana, Hanumakonda, 506004, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Telangana, Hanumakonda, 506004, India
| |
Collapse
|
2
|
Zeng G, Wan J, Yuan Y, Wen Y, Liu L, Li J, Li J, Huang C. Base-Promoted [4 + 1 + 1] Multicomponent Tandem Cycloaddition of Ortho-Substituted Nitroarenes, Aldehydes, and Ammonium Salts To Access 2,4-Substituted Quinazoline Frameworks. J Org Chem 2025; 90:1982-1995. [PMID: 39846728 DOI: 10.1021/acs.joc.4c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We report a base-promoted, metal-free multicomponent tandem reaction, involving a [4 + 1 + 1] cycloaddition process between ortho-substituted nitroarenes, aldehydes, and ammonium salts. Modifying the substituents on the nitroaromatic compounds effectively provides structurally diverse 2-substituted and 4-alkenylquinazolines with good to excellent yields (77%-90% and quinazoline 51 examples) and high tolerance for various inorganic ammonium salts (13 examples, such as NH3·H2O, NH4Cl, and NH4HF2). A new method for constructing 2,4-substituted quinazoline compounds with high selectivity from simple nitrogen source compounds was developed, and the reaction can be scaled up to a gram scale. Additionally, this method also facilitates the preparation of organic molecules with photophysical properties, offering new insights into the further transformation of quinazolines.
Collapse
Affiliation(s)
- Guiyun Zeng
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Juan Wan
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Yilong Yuan
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Yuanmin Wen
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Linyou Liu
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Junjie Li
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Jingpeng Li
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Chao Huang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| |
Collapse
|
3
|
Cyboran-Mikołajczyk S, Matczak K, Olchowik-Grabarek E, Sękowski S, Nowicka P, Krawczyk-Łebek A, Kostrzewa-Susłow E. The influence of the chlorine atom on the biological activity of 2'-hydroxychalcone in relation to the lipid phase of biological membranes - Anticancer and antimicrobial activity. Chem Biol Interact 2024; 398:111082. [PMID: 38825055 DOI: 10.1016/j.cbi.2024.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The study investigates the effect of the presence of a chlorine atom in the 2'-hydroxychalcone molecule on its interaction with model lipid membranes, in order to discern its potential pharmacological activity. Five chlorine derivatives of 2'-hydroxychalcone were synthesized and evaluated against liposomes composed of POPC and enriched with cationic (DOTAP) or anionic (POPG) lipids. The physicochemical properties of the compounds were initially simulated using SwissAdame software, revealing high lipophilicity (ilogP values: 2.79-2.90). The dynamic light scattering analysis of liposomes showed that chloro chalcones induce minor changes in the diameter of liposomes of different surface charges. Fluorescence quenching assays with a TMA-DPH probe demonstrated the strong ability of the compounds to interact with the lipid bilayer, with varying quenching capacities based on chlorine atom position. FTIR studies indicated alterations in carbonyl, phosphate, and choline groups, suggesting a transition area localization rather than deep penetration into the hydrocarbon chains. Additionally, dipole potential reduction was observed in POPC and POPC-POPG membranes, particularly pronounced by derivatives with a chlorine atom in the B ring. Antibacterial and antibiofilm assays revealed enhanced activity of derivatives with a chlorine atom compared to 2'-hydroxychalcone, especially against Gram-positive bacteria. The MIC and MBIC50 values showed increased efficacy in the presence of chlorine with 3'-5'-dichloro-2'-hydroxychalcone demonstrating optimal antimicrobial and antibiofilm activity. Furthermore, antiproliferative assays against breast cancer cell lines indicated higher activity of B-ring chlorine derivatives, particularly against MDA-MB-231 cells. In general, the presence of a chlorine atom in 2'-hydroxychalcone improves its pharmacological potential, with derivatives showing improved antimicrobial, antibiofilm, and antiproliferative activities, especially against aggressive breast cancer cell lines. These findings underscore the importance of molecular structure in modulating biological activity and highlight chalcones with a chlorine as promising candidates for further drug development studies.
Collapse
Affiliation(s)
- Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375, Wrocław, Poland.
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236, Lodz, Poland
| | - Ewa Olchowik-Grabarek
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski St. 1J, 15-245, Białystok, Poland
| | - Szymon Sękowski
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski St. 1J, 15-245, Białystok, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 50-375, Wrocław, Poland
| | - Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375, Wrocław, Poland
| |
Collapse
|
4
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
5
|
Bhanja R, Bera SK, Mal P. Photocatalyst- and Transition Metal-Free Light-Induced Borylation Reactions. Chem Asian J 2023; 18:e202300691. [PMID: 37747303 DOI: 10.1002/asia.202300691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
The increasing global warming concerns have propelled a surge in the demand for sustainable energy sources within the domain of synthetic organic chemistry. A particularly prominent area of research has been the development of mild synthetic strategies for generating heterocyclic compounds. Heterocyclic compounds containing boron have notably risen to prominence as pivotal reagents in a myriad of organic transformations, showcasing their wide-ranging applicability. This comprehensive review is aimed at collecting the literature pertaining to borylation reactions induced by light, specifically focusing on photocatalyst-free and transition metal-free methodologies. The central emphasis is on delving into selective mechanistic investigations. The amalgamation and analysis of these research insights elucidate the substantial potential inherent in eco-friendly approaches for synthesizing heterocyclic compounds, thus propelling the landscape of sustainable organic chemistry.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| |
Collapse
|
6
|
Maharana R, Bhanja R, Mal P, Samanta K. Investigation of the Effect of Solvents on the Synthesis of Aza-flavanone from Aminochalcone Facilitated by Halogen Bonding. ACS OMEGA 2023; 8:33785-33793. [PMID: 37744869 PMCID: PMC10515354 DOI: 10.1021/acsomega.3c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
It has been recognized that CBr4 can give rise to a noncovalent interaction known as halogen bond (XB). CBr4 was found to catalyze, in terms of XB formation, the transformation of 2'-aminochalcone to aza-flavanone through an intramolecular Michael addition reaction. The impact of XB and the resulting yield of aza-flavanone exhibited a pronounced dependence on the characteristics of the solvent. Notably, yields of 88% in ethanol and 33% in DMSO were achieved, while merely a trace amount of the product was detected in benzene. In this work, we use a computational modeling study to understand this variance in yield. The reaction is modeled at the level of density functional theory (based on the M06-2X exchange-correlation functional) with all-electron basis sets of triple-ζ quality. Grimme's dispersion correction is incorporated to account for the noncovalent interactions accurately. Harmonic frequency calculations are carried out to establish the character of the optimized structures (minimum or saddle point). Our calculations confirm the formation of an XB between CBr4 and the reacting species and its role in lowering the activation energy barrier. Stronger orbital interactions and significant lowering of the steric repulsion were found to be important in lowering the activation barrier. The negligible yield in the nonpolar solvent benzene may be attributed to the high activation energy as well as the inadequate stabilization of the zwitterionic intermediate. In ethanol, a protic solvent, additional H-bonding contributes to further lowering of the activation barrier and better stabilization of the zwitterionic intermediate. The combined effects of solvent polarity, XB, and H-bond are likely to give rise to an excellent yield of aza-flavanone in ethanol.
Collapse
Affiliation(s)
- Rajat
Rajiv Maharana
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Argul, Odisha 752050, India
| | - Rosalin Bhanja
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), An OCC of Homi Bhabha National
Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), An OCC of Homi Bhabha National
Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Kousik Samanta
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|