1
|
Yu F, Yang D, Yang Y, Lu D, Gong Y. Photoredox-Enabled Direct and Three-Component Difluoroalkylative Modification of N-Aryl Glycinates. Org Lett 2025; 27:1072-1077. [PMID: 39825835 DOI: 10.1021/acs.orglett.4c04826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
A Cu(I) photoredox-enabled reaction that selectively incorporates a difluoroalkyl group into N-aryl glycine derivatives has been established. Using a bench-stable [Ph3PCF2H]+Br- salt, the -CF2H group could be installed either directly on the α-carbon of the glycine backbone or in a three-component fashion using an alkene as a bridge. A series of glycine derivatives have been evaluated, providing access to diverse unnatural amino esters and dipeptides with a -CHF2 unit. The studies of the compatibility of other perfluorinated alkyl radical precursors showed that the selectivity of direct α-coupling is closely associated with the electronic property of the radical, while the three-component reaction works well in most cases.
Collapse
Affiliation(s)
- Fangyuan Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Daoyi Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yuanlin Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dengfu Lu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, 9 Yuexing Third Road, Shenzhen, Guangdong 518063, China
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Lin SN, Deng Y, Zhong H, Mao LL, Ji CB, Zhu XH, Zhang X, Yang BM. Visible Light-Induced Radical Cascade Difluoromethylation/Cyclization of Unactivated Alkenes: Access to CF 2H-Substituted Polycyclic Imidazoles. ACS OMEGA 2024; 9:28129-28143. [PMID: 38973879 PMCID: PMC11223139 DOI: 10.1021/acsomega.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
An efficient and mild protocol for the visible light-induced radical cascade difluoromethylation/cyclization of imidazoles with unactivated alkenes using easily accessible and bench-stable difluoromethyltriphenylphosphonium bromide as the precursor of the -CF2H group has been developed to afford CF2H-substituted polycyclic imidazoles in moderate to good yields. This strategy, along with the construction of Csp3-CF2H/C-C bonds, is distinguished by mild conditions, no requirement of additives, simple operation, and wide substrate scope. In addition, the mechanistic experiments have indicated that the difluoromethyl radical pathway is essential for the methodology.
Collapse
Affiliation(s)
- Sheng-Nan Lin
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Yuanyuan Deng
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Hanxun Zhong
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Liu-Liang Mao
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Cong-Bin Ji
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Xian-Hong Zhu
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Xiaolan Zhang
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Bin-Miao Yang
- Joint
School of National University of Singapore and Tianjin University, Fuzhou 350207, China
| |
Collapse
|
3
|
Ouyang Y, Qing FL. Photoredox Catalyzed Radical Fluoroalkylation with Non-Classical Fluorinated Reagents. J Org Chem 2024; 89:2815-2824. [PMID: 38385430 DOI: 10.1021/acs.joc.3c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The emergence of photocatalysis has greatly advanced radical fluoroalkylation reactions. Central to this advancement is the introduction and refinement of radical reagents, which play a pivotal role in driving these reactions forward. Intriguingly, some of these reagents, previously not recognized for their radical properties, have emerged as key players in this area. In this Perspective, we provide an overview of four representative reagents pioneered by our laboratory, which have subsequently garnered extensive application in broader research contexts, including difluorocarbene precursors bromodifluoromethylphosphonium bromide, electrophilic sulfonylation reagent triflic anhydride, and nucleophilic trifluoromethylation reagent methyl fluorosulfonyldifluoroacetate (Chen's reagent). The integration of phosphonium reagents, triflic anhydride, and methyl fluorosulfonyldifluoroacetate into photocatalysis has enabled some unexpected reactivities and now notably expanded the capabilities in radical difluoromethylation, trifluoromethylation, and difluoroalkylation. Our discussion highlights how these atypical reagents have enriched the toolkit available for radical fluoroalkylations, offering insights that could inspire future research and application in this area.
Collapse
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
4
|
Levin VV, Dilman AD. Visible-Light Promoted Radical Fluoroalkylation of O- and N-Substituted Alkenes. CHEM REC 2023; 23:e202300038. [PMID: 37017493 DOI: 10.1002/tcr.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Indexed: 04/06/2023]
Abstract
Interaction of enol ethers enol acetates, enamides and enamines with fluorinated reagents may be considered as a reliable method for the synthesis of organofluorine compounds. While classic nucleophile/electrophile substitution or addition mechanisms cannot be realized for coupling of these components, their intrinsic reactivities are revealed with the aid of photoredox catalysis. A combination of these electron donating and accepting components provides a perfect balance needed for individual redox steps, which in some cases may proceed even without a photocatalyst. The same electronic factors also support the key C,C-bond forming event involving addition of fluorinated radical at the electron rich double bond.
Collapse
Affiliation(s)
- Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
5
|
Zhao YS, Huang SJ, Gu YQ, Liu GK. Visible-light photoredox-catalyzed radical aryldifluoromethylation of N-arylacrylamides with S-(difluoromethyl)sulfonium salt. Org Biomol Chem 2023; 21:4013-4017. [PMID: 37128753 DOI: 10.1039/d3ob00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A facile and highly efficient visible-light photoredox-catalyzed protocol for aryldifluoromethylation of acrylamides was developed using S-(difluoromethyl)sulfonium salt as the difluoromethyl source. With this method, pharmaceutically interesting CF2H-containing oxindoles were readily accessed from N-arylacrylamides, and this method featured mild reaction conditions, a broad scope of substrates, good tolerance of functional groups, and good to excellent yields. Control experiments revealed that this protocol proceeded through a difluoromethylation/cyclization cascade process.
Collapse
Affiliation(s)
- Ya-Shi Zhao
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Sheng-Jie Huang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Yuan-Qing Gu
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Guo-Kai Liu
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|