1
|
Liang T, Chen X, Liu S, Li H, Du T, Li Y, Tian M, Wu C, Sun X, Qiang T, Zhong K, Tang L. A self-assembled nanoprobe for rapid detection of hypochlorite in pure water and its application in living cells, food and environmental systems. Talanta 2024; 279:126597. [PMID: 39067201 DOI: 10.1016/j.talanta.2024.126597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
As an important ROS species participating in various physiological and pathological processes, high level of hypochlorite (ClO-) poses significant health and safety concerns, necessitating efficient detection methods. Herein, this study introduces a water-soluble fluorescent nanoprobe Nano-SJD, effectively detect ClO- in both food samples and living cells. The small molecular probe SJD with N, N-dimethylthiocarbamyl (DMTC) as recognition moiety was constructed based on a naphthalene derivative. To further improve the water solubility, SJD was assembled with an amphiphilic copolymer (mPEG-DSPE) to prepare a water soluble fluorescent nanoprobe Nano-SJD. Fortunately, the nanoprobe preserves the excellent properties of small molecules and performs very well optical response to ClO- in aqueous solution, possessing the advantages including ultra-rapid response (within 1 s), minimal interference, low detection limits (0.39 μM) and good pH stability. What's more important, we have also developed smartphone-compatible test paper strips for convenient on-site detection of ClO- in real-water samples. Additionally, the robust fluorescent imaging behavior of Nano-SJD for visualization of ClO- in living cells highlights its broad potential in biosystem applicability.
Collapse
Affiliation(s)
- Tianyu Liang
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, PR China
| | - Xinyu Chen
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China
| | - Shuling Liu
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China
| | - Hanyang Li
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China
| | - Tianli Du
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China
| | - Yang Li
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China.
| | - Mingyu Tian
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China
| | - Chengyan Wu
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China
| | - Xiaofei Sun
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Keli Zhong
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China.
| | - Lijun Tang
- School of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, PR China.
| |
Collapse
|
2
|
Kumari A, Sharma S, Sengupta S. Molecular rotors of naphthalimide and benzodithiophene as effective solvent polarity probes, temperature sensors, and for g-C 3N 4 sensitization. Photochem Photobiol 2024; 100:1055-1067. [PMID: 38459693 DOI: 10.1111/php.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Acceptor-donor-acceptor (A-D-A) molecular rotors have drawn substantial attention for their applications in monitoring temperature variations within cellular microenvironments, biomimetic photocatalysis, and bioimaging. In this study, we have synthesized two novel rotor molecules, NBN1 and NBN2, by incorporating benzodithiophene (BDT) as the donor core and naphthalic anhydride/naphthalimide (NA/NI) moieties as acceptors using Pd-catalyzed Stille coupling reactions. These molecules exhibited distinct charge transfer (CT) behavior in both their absorption and emission spectra and displayed prominent emission solvatochromism. Notably, NBN1 exhibited better CT properties among the two molecules. Moreover, these A-D-A molecular rotors demonstrated remarkable sensitivities of their emission spectra toward solvent polarities and temperatures. Rotors NBN1 and NBN2 showed positive temperature coefficients with internal temperature sensitivities of 0.34% °C-1 and 0.13% °C-1 in chloroform, respectively, and thus hold significant promise for detecting temperature variations in cellular microenvironment. Furthermore, we have modeled these molecules with graphitic carbon nitride (g-C3N4) to form composite systems and performed theoretical calculations to obtain valuable insights into their charge transfer behavior. Theoretical results suggested that these molecules have the potential to efficiently sensitize and modulate the band gap of g-C3N4 and show potential for diverse photocatalytic applications.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sushil Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| |
Collapse
|
3
|
Sharma S, Sengupta S. Diindolocarbazole-Based Rigid Donor-Acceptor TADF Molecules for Energy and Electron Transfer Photocatalysis. Chemistry 2024; 30:e202303754. [PMID: 38009376 DOI: 10.1002/chem.202303754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 11/28/2023]
Abstract
The design and synthesis of four twisted donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) molecules CBZ-IQ, CBZ-2FIQ, DI-IQ and DI-2FIQ is reported in this work based on diindolocarbazole (DI) and phenyl carbazole as donor and indoloquinoxalines as acceptor. These compounds serve as photocatalysts for organic transformations. Theoretical calculations and experimental data showed reasonable singlet and triplet energy gaps of 0.17-0.26 eV for all compounds. All molecules showed increase in fluorescence quantum yields after degassing the solution and the transient photoluminescence decay showed two components: shorter prompt components (11.4 ns to 31 ns) and longer delayed components (36.4 ns to 1.5 μs) which further indicate the occurrence of TADF process. Cyclic voltammetry studies indicated well-suited excited state redox potentials of all compounds to catalyze organic transformations such as heteroarene arylation. Accordingly, photocatalytic C-H arylation of heteroarenes were performed using these compounds with excellent isolated yields of upto 80 %. Due to their suitable efficient triplet energy levels, all the emitters were also employed as energy transfer photocatalysts in E to Z isomerization of stilbene with the excellent conversion of ~90 %.
Collapse
Affiliation(s)
- Sushil Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Punjab, 140306, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Punjab, 140306, India
| |
Collapse
|
4
|
Sahoo PR, Kumar N, Sairam K, Gulati LK, Gulati GK, Datta A, Kumar S. A tuning fork-shaped bisbenzothiazole derivative as a pH-responsive digital fluorescent probe and its ex vivo evaluation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6722-6726. [PMID: 38050719 DOI: 10.1039/d3ay01702h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
A new highly emissive pH-responsive near-IR active digital probe was designed and synthesized. The probe is based on a bisbenzothiazole motif with a highly vulnerable hydrogen unit attached in an intramolecular fashion. The probe produced a large Stokes shift which was observed to be highly pH dependent. The optical pH dependence can be used for sensing pH over a wide range.
Collapse
Affiliation(s)
- Priya Ranjan Sahoo
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. SK Majumdar Marg, Delhi 110054, India.
| | - Keloth Sairam
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| | - L K Gulati
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| | - G K Gulati
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. SK Majumdar Marg, Delhi 110054, India.
| | - Satish Kumar
- Department of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India.
| |
Collapse
|
5
|
Zhang C, Wang Y, Li X, Nie S, Liu C, Zhang Y, Guo J. A fluorescent probe based on phenothiazine for detection of ClO− with naked-eye color change properties. Anal Biochem 2023; 670:115131. [PMID: 37001597 DOI: 10.1016/j.ab.2023.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Hypochlorite (ClO-) plays a key role in life systems and it is necessary to develop an effective detection method. In view of the significant advantages of the fluorescent probe, we have synthesized a naked-eye recognition fluorescent probe NNCF for the detection of ClO- based on phenothiazine and naphthalimide. The probe NNCF is sensitive (LOD = 9.5 nM) and fast for ClO- (within 30 s), and its Stokes shift is as large as 161 nm. In addition, the probe NNCF has been successfully used for imaging detection of exogenous ClO- in MCF-7 cells with low toxicity.
Collapse
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China.
| | - Yiming Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Xiangling Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Shiru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Jinghao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| |
Collapse
|