Mousavi MS, Di Mola A, Pierri G, Massa A. Isochroman-3,4-dione and Tandem Aerobic Oxidation of 4-Bromoisochroman-3-one in the Highly Regio- and Diastereoselective Diels-Alder Reaction for the Construction of Bridged Polycyclic Lactones.
J Org Chem 2024;
89:18602-18611. [PMID:
39632575 DOI:
10.1021/acs.joc.4c02522]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein we report two processes facilitated by diisopropylethylamine (DIPEA) for the synthesis of novel bridged polycyclic molecule analogues to natural products. The use of 4-bromoisochroman-3-one initiated an autoxidation reaction, followed by a Diels-Alder cycloaddition in the presence of electron-deficient dienophiles. Mechanistic studies revealed isochromane-3,4-dione as a key intermediate, which undergoes in situ dienolization/dearomatization followed by a [4 + 2] cycloaddition. Subsequently, the synthesis and direct application of isochromane-3,4-diones in the Diels-Alder reaction enabled the development of an alternative method with an enhanced efficiency and improved atom economy. In addition to chalcones, other enones and common electron-poor alkenes, bearing ester, nitro and cyano electron-withdrawing groups (including both terminal, cis acyclic and cyclic alkenes), were successfully reacted. The mechanism was also investigated, and a subsequent reductive ring opening was successfully carried out.
Collapse