1
|
Calderón-Díaz A, Boggiano AC, Xiong W, Kaiser N, Gutekunst WR. Degradable N-Vinyl Copolymers through Radical Ring-Opening Polymerization of Cyclic Thionocarbamates. ACS Macro Lett 2024; 13:1390-1395. [PMID: 39374102 PMCID: PMC11580385 DOI: 10.1021/acsmacrolett.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
A thiocarbonyl radical ring-opening polymerization approach was implemented with cyclic thionocarbamates to generate degradable copolymers with N-vinyl monomers. The rigid structures of cyclic N-substituted thionocarbamates have been revealed by X-ray crystallography and NMR spectroscopy. The corresponding copolymers show incorporation of the thiocarbamates within the carbon backbone of polyvinylpyrrolidone influenced by acyl substituents through radical ring-opening copolymerization. The phenyl-substituted cyclic thionocarbamate copolymerized with N-vinyl carbazole and N-vinyl caprolactam, while little to no incorporation occurred with tBu acrylate and styrene, respectively. Further, these copolymers can undergo hydrolytic degradation under mild conditions. A new family of cyclic thionocarbamates capable of radical ring-opening copolymerization with N-vinyl monomers has been established.
Collapse
Affiliation(s)
- Alvaro Calderón-Díaz
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Andrew C. Boggiano
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Wei Xiong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Nadine Kaiser
- BASF
SE, Group Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany
| | - Will R. Gutekunst
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Qin KP, Herzog-Arbeitman A, Zou W, Chakraborty S, Kristufek SL, Husted KEL, Joly GD, Craig SL, Olsen BD, Johnson JA. Toughening and Imparting Deconstructability to 3D-Printed Glassy Thermosets with "Transferinker" Additives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406600. [PMID: 39258368 DOI: 10.1002/adma.202406600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Indexed: 09/12/2024]
Abstract
Thermoset toughness and deconstructability are often opposing features; simultaneously improving both without sacrificing other mechanical properties (e.g., stiffness and tensile strength) is difficult, but, if achieved, could enhance the usage lifetime and end-of-life options for these materials. Here, a strategy that addresses this challenge in the context of photopolymer resins commonly used for 3D printing of glassy, acrylic thermosets is introduced. It is shown that incorporating bis-acrylate "transferinkers," which are cross-linkers capable of undergoing degenerative chain transfer and new strand growth, as additives (5-25 mol%) into homemade or commercially available photopolymer resins leads to photopolymer thermosets with substantially improved tensile toughness and triggered chemical deconstructability with minimal impacts on Young's moduli, tensile strengths, and glass transition temperatures. These properties result from a transferinker-driven topological transition in network structure from the densely cross-linked long, heterogeneous primary strands of traditional photopolymer networks to more uniform, star-like networks with few dangling ends; the latter structure more effectively bear stress yet is also more easily depercolated via solvolysis. Thus, transferinkers represent a simple and effective strategy for improving the mechanical properties of photopolymer thermosets and providing a mechanism for their triggered deconstructability.
Collapse
Affiliation(s)
- K Peter Qin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Abraham Herzog-Arbeitman
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Weizhong Zou
- Department of Chemical, Biological and Materials Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | | | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Keith E L Husted
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Guy D Joly
- 3 M Company, 3 M Center, St. Paul, MN, 55144, USA
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Tan J, Tang R, Wang R, Gao X, Chen K, Liu X, Wu F, Zhu L. Thiocarbonyl-Based Hole Transport Materials with Enhanced Defect Passivation Ability for Efficient and Stable Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402760. [PMID: 38934553 DOI: 10.1002/smll.202402760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Organic hole transporting materials (HTMs) are extensively studied in perovskite solar cells (PSCs). The HTMs directly contact the underlying perovskite material, and they play additional roles apart from hole transporting. Developing organic HTMs with defect passivation function has been proved to be an efficient strategy to construct efficient and stable PSCs. In this work, new organic molecules with thiocarbonyl (C═S) and carbonyl (C═O) functional groups are synthesized and applied as HTMs (named FN-S and FN-O). FN-S with C═S can be facilely obtained from FN-O containing C═O. Notably, the C═S in FN-S results in superior defect passivation ability compared to FN-O. Moreover, FN-S exhibits excellent hole extraction/transport capability. Conventional PSCs using FN-S as HTM show an impressive power conversion efficiency (PCE) of 23.25%, with excellent long-term stability and operational stability. This work indicates that simply converting C═O to C═S is an efficient way to improve the device performance by strengthening the defect passivation functionality.
Collapse
Affiliation(s)
- Junhong Tan
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Rong Tang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, P. R. China
| | - Ruiqin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Xing Gao
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Kaixing Chen
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Xiaorui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Fei Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Linna Zhu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
4
|
Sbordone F, Frisch H. Plenty of Space in the Backbone: Radical Ring-Opening Polymerization. Chemistry 2024; 30:e202401547. [PMID: 38818742 DOI: 10.1002/chem.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Radical polymerization is the most widely applied technique in both industry and fundamental science. However, its major drawback is that it typically yields polymers with non-functional, non-degradable all-carbon backbones-a limitation that radical ring-opening polymerization (rROP) allows to overcome. The last decade has seen a surge in rROP, primarily focused on creating degradable polymers. This pursuit has resulted in the creation of the first readily degradable materials through radical polymerization. Recent years have witnessed innovations in new monomers that address previous design limitations, such as ring strain and reactivity ratios. Furthermore, advances in integrating rROP with reversible deactivation radical polymerization (RDRP) have facilitated the incorporation of complex, customizable chemical payloads into the main polymer chain. This short review discusses the latest developments in monomer design with a focused analysis of their limitations in a broader historical context. Recently evolving strategies for compatibility of rROP monomers with RDRP are discussed, which are key to precision polymer synthesis. The latest chemistry surveyed expands the horizon beyond mere hydrolytic degradation. Now is the time to explore the chemical potential residing in the previously inaccessible polymer backbone.
Collapse
Affiliation(s)
- Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Ko K, Lundberg DJ, Johnson AM, Johnson JA. Mechanism-Guided Discovery of Cleavable Comonomers for Backbone Deconstructable Poly(methyl methacrylate). J Am Chem Soc 2024; 146:9142-9154. [PMID: 38526229 DOI: 10.1021/jacs.3c14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.
Collapse
Affiliation(s)
- Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Xiang H, Wang J, Guo Z, Chen Y, Jiang B, Ye S, Yi W. Functional Polythioamides Derived from Thiocarbonyl Fluoride. Angew Chem Int Ed Engl 2023; 62:e202313779. [PMID: 37749059 DOI: 10.1002/anie.202313779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Polythioamide is a unique type of sulfur-containing polymer with advanced functionalities. Nonetheless, the elemental sulfur commonly used in their synthesis tends to react readily with unsaturated functional groups, thereby limiting the scope of eligible substrates. Inspired by the highly efficient sulfur-fluoride exchange (SuFEx) polymerization through discrete hubs, we present herein a pioneering and versatile approach to the synthesis of polythioamides from diboronic acids, secondary diamines, and thiocarbonyl fluoride as the central connective hub. Well-defined structures, including previously inaccessible unsaturated substrates, were realized. These newly devised polythioamides can efficiently and selectively bind to metal ions and were applied in precious-metal recovery. Further development resulted in PdII -crosslinked single-chain nanoparticles serving as recyclable homogeneous catalysts, thus demonstrating the vast potential of these unprecedented polythioamides. We anticipate that thiocarbonyl fluoride could emerge as a potent hub for facilitating the intricate synthesis of sulfur-containing polymers.
Collapse
Affiliation(s)
- Haonan Xiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jieping Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yucong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Beihan Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sitao Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Fornacon-Wood C, Stühler MR, Gallizioli C, Manjunatha BR, Wachtendorf V, Schartel B, Plajer AJ. Precise construction of weather-sensitive poly(ester- alt-thioesters) from phthalic thioanhydride and oxetane. Chem Commun (Camb) 2023; 59:11353-11356. [PMID: 37655470 DOI: 10.1039/d3cc03315e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We report the selective ring opening copolymerisation (ROCOP) of oxetane and phthalic thioanhydride by a heterobimetallic Cr(III)K catalyst precisely yielding semi-crystalline alternating poly(ester-alt-thioesters) which show improved degradability due to the thioester links in the polymer backbone.
Collapse
Affiliation(s)
- Christoph Fornacon-Wood
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| | - Merlin R Stühler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| | - Cesare Gallizioli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| | - Bhargav R Manjunatha
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| | - Volker Wachtendorf
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Bernhard Schartel
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Alex J Plajer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| |
Collapse
|
8
|
Wilding CP, Knox ST, Bourne RA, Warren NJ. Development and Experimental Validation of a Dispersity Model for In Silico RAFT Polymerization. Macromolecules 2023; 56:1581-1591. [PMID: 36874531 PMCID: PMC9979647 DOI: 10.1021/acs.macromol.2c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/20/2023] [Indexed: 02/11/2023]
Abstract
The exploitation of computational techniques to predict the outcome of chemical reactions is becoming commonplace, enabling a reduction in the number of physical experiments required to optimize a reaction. Here, we adapt and combine models for polymerization kinetics and molar mass dispersity as a function of conversion for reversible addition fragmentation chain transfer (RAFT) solution polymerization, including the introduction of a novel expression accounting for termination. A flow reactor operating under isothermal conditions was used to experimentally validate the models for the RAFT polymerization of dimethyl acrylamide with an additional term to accommodate the effect of residence time distribution. Further validation is conducted in a batch reactor, where a previously recorded in situ temperature monitoring provides the ability to model the system under more representative batch conditions, accounting for slow heat transfer and the observed exotherm. The model also shows agreement with several literature examples of the RAFT polymerization of acrylamide and acrylate monomers in batch reactors. In principle, the model not only provides a tool for polymer chemists to estimate ideal conditions for a polymerization, but it can also automatically define the initial parameter space for exploration by computationally controlled reactor platforms provided a reliable estimation of rate constants is available. The model is compiled into an easily accessible application to enable simulation of RAFT polymerization of several monomers.
Collapse
Affiliation(s)
- Clarissa.
Y. P. Wilding
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Stephen. T. Knox
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Richard. A. Bourne
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Nicholas. J. Warren
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| |
Collapse
|
9
|
3-Methyl-1-phenyl-4-thioacetylpyrazol-5-one. MOLBANK 2023. [DOI: 10.3390/m1588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The novel compound 3-methyl-1-phenyl-4-thioacetylpyrazol-5-one is obtained in excellent yield via a thionation of the corresponding oxygen analogue. The product is isolated in pure form using column chromatography and is characterised using 1D and 2D NMR experiments, ATR IR and HRMS spectra, and single-crystal XRD.
Collapse
|
10
|
Uchiyama M, Murakami Y, Satoh K, Kamigaito M. Synthesis and Degradation of Vinyl Polymers with Evenly Distributed Thioacetal Bonds in Main Chains: Cationic DT Copolymerization of Vinyl Ethers and Cyclic Thioacetals. Angew Chem Int Ed Engl 2023; 62:e202215021. [PMID: 36369911 PMCID: PMC10107285 DOI: 10.1002/anie.202215021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/15/2022]
Abstract
We report a novel method to synthesize degradable poly(vinyl ether)s with cleavable thioacetal bonds periodically arranged in the main chains using controlled cationic copolymerization of vinyl ethers with a 7-membered cyclic thioacetal (7-CTA) via degenerative chain transfer (DT) to the internal thioacetal bonds. The thioacetal bonds, which are introduced into the main chain by cationic ring-opening copolymerization of 7-CTA with vinyl ethers, serve as in-chain dormant species to allow homogeneous propagation of vinyl ethers for all internal segments to afford copolymers with controlled overall and segmental molecular weights. The obtained polymers can be degraded into low- and controlled-molecular-weight polymers with narrow molecular weight distributions via hydrolysis. Various vinyl ethers with hydrophobic, hydrophilic, and functional pendants are available. Finally, one-pot synthesis of multiblock copolymers and their degradation into diblock copolymers are also achieved.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yukihiro Murakami
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
11
|
Lehnen AC, Gurke J, Bapolisi AM, Reifarth M, Bekir M, Hartlieb M. Xanthate-supported photo-iniferter (XPI)-RAFT polymerization: facile and rapid access to complex macromolecules. Chem Sci 2023; 14:593-603. [PMID: 36741515 PMCID: PMC9847670 DOI: 10.1039/d2sc05197d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Xanthate-supported photo-iniferter (XPI)-reversible addition-fragmentation chain-transfer (RAFT) polymerization is introduced as a fast and versatile photo-polymerization strategy. Small amounts of xanthate are added to conventional RAFT polymerizations to act as a photo-iniferter under light irradiation. Radical exchange is facilitated by the main CTA ensuring control over the molecular weight distribution, while xanthate enables an efficient photo-(re)activation. The photo-active moiety is thus introduced into the polymer as an end group, which makes chain extension of the produced polymers possible directly by irradiation. This is in sharp contrast to conventional photo-initiators, or photo electron transfer (PET)-RAFT polymerizations, where radical generation depends on the added small molecules. In contrast to regular photo-iniferter-RAFT polymerization, photo-activation is decoupled from polymerization control, rendering XPI-RAFT an elegant tool for the fabrication of defined and complex macromolecules. The method is oxygen tolerant and robust and was used to perform screenings in a well-plate format, and it was even possible to produce multiblock copolymers in a coffee mug under open-to-air conditions. XPI-RAFT does not rely on highly specialized equipment and qualifies as a universal tool for the straightforward synthesis of complex macromolecules. The method is user-friendly and broadens the scope of what can be achieved with photo-polymerization techniques.
Collapse
Affiliation(s)
- Anne-Catherine Lehnen
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Johannes Gurke
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Alain M Bapolisi
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
| | - Martin Reifarth
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Marek Bekir
- University of Potsdam, Institute of Physics and Astronomy Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
| | - Matthias Hartlieb
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| |
Collapse
|
12
|
Kim CG, Jeong HJ, Do JY. Divergent chain growth of poly(dithiocarbonate)s through arylmethyl triflate-mediated ring-opening polymerization of cyclic dithiocarbonate. Polym J 2023. [DOI: 10.1038/s41428-022-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Kamiki R, Kubo T, Satoh K. Addition-Fragmentation Ring-Opening Polymerization of Bio-Based Thiocarbonyl l-Lactide for Dual Degradable Vinyl Copolymers. Macromol Rapid Commun 2023; 44:e2200537. [PMID: 36053044 DOI: 10.1002/marc.202200537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Indexed: 01/26/2023]
Abstract
This study is designed to synthesize novel degradable polymers by radical addition-fragmentation ring-opening copolymerization of bio-based thiocarbonyl compounds with various vinyl monomers. Thiocarbonyl l-lactide is capable of radical copolymerization with acrylates and styrene via radical addition to the carbon-sulfur double bonds followed by ring-opening as well as controlled copolymerization in conjunction with the reversible addition-fragmentation chain transfer (RAFT) process. The obtained polymers possess ring-opened thioester and ring-retained thioacetal functionalities in the backbone, both of which could be cleaved under appropriate conditions with different chemical stimuli.
Collapse
Affiliation(s)
- Ryoya Kamiki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tomohiro Kubo
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
15
|
Amano M, Uchiyama M, Satoh K, Kamigaito M. Sulfur-Free Radical RAFT Polymerization of Methacrylates in Homogeneous Solution: Design of exo-Olefin Chain-Transfer Agents (R-CH 2 C(=CH 2 )Z). Angew Chem Int Ed Engl 2022; 61:e202212633. [PMID: 36250802 PMCID: PMC10099145 DOI: 10.1002/anie.202212633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/05/2022]
Abstract
In this work, the development of exo-olefin compounds (R-CH2 C(=CH2 )Z) as chain-transfer agents for the sulfur-free reversible addition-fragmentation chain transfer (RAFT) radical polymerization of methacrylates in homogeneous solution is described. A series of exo-olefin compounds with a methyl methacrylate (MMA) dimer structure as the R group and a substituted α-methylstyrene unit as the -CH2 C(=CH2 )Z (Z: Ph-Y) group were synthesized and used for the radical polymerization of MMA in toluene and PhC(CF3 )2 OH. These compounds underwent transfer of the CH2 C(=CH2 )Z group via addition-fragmentation of the propagating methacryloyl radical. More electron-donating (Y) substituents, such as methoxy and dimethylamino groups, produced polymers with narrower molecular weight distributions. A continuous monomer addition method further improved molecular weight control and enabled the synthesis of colorless, sulfur-free, multiblock copolymers of methacrylates in homogeneous solutions.
Collapse
Affiliation(s)
- Maki Amano
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-kuNagoya464-8603Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-kuNagoya464-8603Japan
| | - Kotaro Satoh
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology2-12-1-H120 OokayamaMeguro-kuTokyo152-8550Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-kuNagoya464-8603Japan
| |
Collapse
|
16
|
Li H, Guillaume SM, Carpentier J. Polythioesters Prepared by Ring-Opening Polymerization of Cyclic Thioesters and Related Monomers. Chem Asian J 2022; 17:e202200641. [PMID: 35816010 PMCID: PMC9543045 DOI: 10.1002/asia.202200641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters with a wide range of applications; in particular, they currently stand as promising alternatives to conventional polyolefin-based "plastics". The introduction of sulfur atoms within the PHAs backbone can endow the resulting polythioesters (PTEs) with differentiated, sometimes enhanced thermal, optical and mechanical properties, thereby widening their versatility and use. Hence, PTEs have been gaining increasing attention over the past half-decade. This review highlights recent advances towards the synthesis of well-defined PTEs by ring-opening polymerization (ROP) of cyclic thioesters - namely thiolactones - as well as of S-carboxyanhydrides and thionolactones; it also covers the ring-opening copolymerization (ROCOP) of cyclic thioanhydrides or thiolactones with epoxides or episulfides. Most of the ROP reactions described are of anionic type, mediated by inorganic, organic or organometallic initiators/catalysts, along with a few enzymatic reactions as well. Emphasis is placed on the reactivity of the thio monomers, in relation to their ring-size ranging from 4- to 5-, 6- and 7-membered cycles, the nature of the catalyst/initiating systems implemented and their efficiency in terms of activity and control over the PTE molar mass, dispersity, topology, and microstructure.
Collapse
Affiliation(s)
- Hui Li
- Univ RennesCNRSISCR-UMR 622635000RennesFrance
| | | | | |
Collapse
|
17
|
Purohit VB, Pięta M, Pietrasik J, Plummer CM. Recent advances in the ring-opening polymerization of sulfur-containing monomers. Polym Chem 2022. [DOI: 10.1039/d2py00831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the broad range of applications for sulfur-containing polymers, this article presents an overview regarding various ROP technologies (ROP/rROP/ROMP) which cement the importance of sulfur-containing monomers in modern polymer chemistry.
Collapse
Affiliation(s)
- Vishal B. Purohit
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marlena Pięta
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Joanna Pietrasik
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Christopher M. Plummer
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
18
|
Ivanchenko O, Mazières S, Harrisson S, Destarac M. Lactide-derived monomers for radical thiocarbonyl addition-ring-opening copolymerisation. Polym Chem 2022. [DOI: 10.1039/d2py00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The six-membered DL-thionolactide and DL-dithionolactide are reactive in radical ring-opening copolymerisation with a series of vinyl monomers to yield chemically degradable polymers. Bleach is an excellent degrading agent for both...
Collapse
|