1
|
Zhang X, Li Z, Wang L, Yu J, Liu Y, Song P. Selective Copolymerization from Mixed Monomers of Phthalic Anhydride, Propylene Oxide and Lactide Using Nano-Sized Zinc Glutarate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1535. [PMID: 39330691 PMCID: PMC11434771 DOI: 10.3390/nano14181535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Selective polymerization with heterogeneous catalysts from mixed monomers remains a challenge in polymer synthesis. Herein, we describe that nano-sized zinc glutarate (ZnGA) can serve as a catalyst for the selective copolymerization of phthalic anhydride (PA), propylene oxide (PO) and lactide (LA). It was found that the ring-opening copolymerization (ROCOP) of PA with PO occurs firstly in the multicomponent polymerization. After the complete consumption of PA, the ring-opening polymerization (ROP) of LA turns into the formation of block polyester. In the process, the formation of zinc-alkoxide bonds on the surface of ZnGA accounts for the selective copolymerization from ROCOP to ROP. These results facilitate the understanding of the heterogeneous catalytic process and offer a new platform for selective polymerization from monomer mixtures.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Zhidong Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Liyan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Jingjing Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Yefan Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Song
- College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
2
|
Kalinova R, Grancharov G, Doumanov J, Mladenova K, Petrova S, Dimitrov I. Green Synthesis and the Evaluation of a Functional Amphiphilic Block Copolymer as a Micellar Curcumin Delivery System. Int J Mol Sci 2023; 24:10588. [PMID: 37445767 DOI: 10.3390/ijms241310588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Polymer micelles represent one of the most attractive drug delivery systems due to their design flexibility based on a variety of macromolecular synthetic methods. The environmentally safe chemistry in which the use or generation of hazardous materials is minimized has an increasing impact on polymer-based drug delivery nanosystems. In this work, a solvent-free green synthetic procedure was applied for the preparation of an amphiphilic diblock copolymer consisting of biodegradable hydrophobic poly(acetylene-functional carbonate) and biocompatible hydrophilic polyethylene glycol (PEG) blocks. The cyclic functional carbonate monomer 5-methyl-5-propargyloxycarbonyl-1,3-dioxane-2-one (MPC) was polymerized in bulk using methoxy PEG-5K as a macroinitiator by applying the metal-free organocatalyzed controlled ring-opening polymerization at a relatively low temperature of 60 °C. The functional amphiphilic block copolymer self-associated in aqueous media into stable micelles with an average diameter of 44 nm. The copolymer micelles were physico-chemically characterized and loaded with the plant-derived anticancer drug curcumin. Preliminary in vitro evaluations indicate that the functional copolymer micelles are non-toxic and promising candidates for further investigation as nanocarriers for biomedical applications.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| | - Georgy Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| | - Jordan Doumanov
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Kirilka Mladenova
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Svetla Petrova
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Xie H, Zheng L, Feng J, Wang X, Kuang S, Zhou L, Jiang J, Xu Y, Zhao Y, Xu Z. Alkali metal carbonate catalyzed copolymerization of anhydrides and epoxides: a simple, efficient and versatile approach to well-defined alternating polyesters. Polym Chem 2023. [DOI: 10.1039/d2py01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Readily available and economical alkali metal carbonates have been utilized to catalyze the ROAC of PA and various epoxides to afford polyesters with perfectly alternating sequence distribution, controlled molar masses, and moderate dispersity.
Collapse
Affiliation(s)
- Hongyan Xie
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314000, China
- China National Textile and Apparel Council Key Laboratory of Flame Retardancy Finishing of Textile Materials, Soochow University, Suzhou 215123, China
| | - Lanlan Zheng
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314000, China
| | - Jiabing Feng
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314000, China
| | - Xinyu Wang
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314000, China
| | - Suping Kuang
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314000, China
| | - Li Zhou
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314000, China
| | - Jia Jiang
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314000, China
| | - Yaling Xu
- School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314000, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
4
|
Xia X, Gao T, Li F, Suzuki R, Isono T, Satoh T. Multidimensional Control of Repeating Unit/Sequence/Topology for One-Step Synthesis of Block Polymers from Monomer Mixtures. J Am Chem Soc 2022; 144:17905-17915. [PMID: 36150017 DOI: 10.1021/jacs.2c06860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synchronously and thoroughly adjusting the chemical structure difference between two blocks of the diblock copolymer is very useful for designing materials but difficult to achieve via self-switchable alternating copolymerization. Here, we report self-switchable alternating copolymerization from a mixture of two different cyclic anhydrides, epoxides, and oxetanes, where a simple alkali metal carboxylate catalyst switches between ring-opening alternating copolymerization (ROCOP) of cyclic anhydrides/epoxides and ROCOP of cyclic anhydrides/oxetanes, resulting in the formation of a perfect block tetrapolymer. By investigating the reactivity ratio of these comonomers, a reactivity gradient was established, enabling the precise synthesis of block copolymers with synchronous adjustment of each unit's chemical structure/sequence/topology. Consequently, a diblock tetrapolymer with two glass transition temperatures (Tg) can be easily produced by adjusting the difference in chemical structures between the two blocks.
Collapse
Affiliation(s)
- Xiaochao Xia
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.,Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|