1
|
Wang Y, Dou Y, Takastu H, Wang T, Koo HJ, Whangbo MH, Kageyama H, Lu H. Single-Step Synthesis of An Ideal Chain Antiferromagnet [H 2(4,4'-bipyridyl)](H 3O) 2Fe 2F 10 with Spin S=5/2. Angew Chem Int Ed Engl 2025; 64:e202415700. [PMID: 39248441 DOI: 10.1002/anie.202415700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
One-dimensional (1D) magnets are of great interest owing to their intriguing quantum phenomena and potential application in quantum computing. We successfully synthesized an ideal antiferromagnetic spin S=5/2 chain compound [H2(4,4'-bpy)](H3O)2Fe2F10 (4,4'-bpy=4,4'-bipyridyl) 1, using a single-step low-temperature hydrothermal method under conditions that favors the protonation of the bulky bidentate ligand 4,4'-bpy. Compound 1 consists of well-separated (Fe3+-F-)∞ chains with a large Fe-F-Fe angle of 174.8°. Both magnetic susceptibility and specific heat measurements show that 1 does not undergo a magnetic long-range ordering down to 0.5 K, despite the strong Fe-F-Fe intrachain spin exchange J with J/kB=-16.2(1) K. This indicates a negligibly weak interchain spin exchange J'. The J'/J value estimated for 1 is extremely small (<2.8×10-6), smaller than those reported for all other S=5/2 chain magnets. Our hydrothermal synthesis incorporates both [H2(4,4'-bpy)]2+ and (H3O)+ cations into the crystal lattice with numerous hydrogen bonds, hence effectively separating the (Fe3+-F-)∞ spin chains. This single-step hydrothermal synthesis under conditions favoring the protonation of bulky bidentate ligands offers an effective synthetic strategy to prepare well-separated 1D spin chain systems of magnetic ions with various spin values.
Collapse
Affiliation(s)
- Yanhong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yaling Dou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hiroshi Takastu
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Tao Wang
- School of Materials Science and Engineering, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hyun-Joo Koo
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myung-Hwan Whangbo
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Hiroshi Kageyama
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Villa-Pérez C, Zabala-Lekuona A, Vitorica-Yrezabal IJ, Seco JM, Cepeda J, Echeverría GA, Soria DB. Spin canting and slow magnetic relaxation in mononuclear cobalt(II) sulfadiazine ternary complexes. Dalton Trans 2024. [PMID: 38252541 DOI: 10.1039/d3dt02359a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Monomeric [Co(SDZ)2phen] (1) and [Co(SDZ)(bq)Cl] (2) complexes (SDZ = sulfadiazine, phen = 1,10-phenanthroline, and bq = 2,2'-biquinoline) have been synthesized and characterized. X-ray diffraction studies indicate that SDZ acts as a bidentate ligand coordinating through the sulfonamide and the pyrimidine N atoms in both compounds. In complex 1, the coordination sphere consists of two SDZ ligands and a bis-chelating phen ligand, giving rise to a CoN6 coordination sphere. On the other hand, 2 has a CoN4Cl core, with two N-atoms from SDZ and two from the bq ligand. Both compounds have been studied by dc and ac magnetometry and shown to display slow magnetic relaxation under an optimum external dc field (1 kOe) at low temperatures. Moreover, compound 2 displays long range magnetic ordering provided by spin-canted antiferromagnetism, which has been characterized by further field-dependent magnetic susceptibility measurements, FC/ZFC curves, hysteresis loops and frequency-independent ac curves. The signs of the calculated D parameters, positive in 1 and negative in 2, have been rationalized according to the two lowest-lying transitions in the orbital energy diagrams derived from ab initio ligand field theory (AILFT). In a subsequent attempt to reveal the possible hidden zero-field SMM behaviour, Ni(II)-based 3 and Co(II)-doped Ni(II)-based (with a Ni : Co ratio of 0.9 : 0.1) heterometallic compound 2Ni were synthesized.
Collapse
Affiliation(s)
- Cristian Villa-Pérez
- CEQUINOR (CONICET, CCT - La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Bv. 120 no. 1465, 1900, La Plata, Argentina.
| | - Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal no. 3, 20018, Donostia, Spain.
| | - Iñigo J Vitorica-Yrezabal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - José Manuel Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal no. 3, 20018, Donostia, Spain.
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal no. 3, 20018, Donostia, Spain.
| | - Gustavo Alberto Echeverría
- IFLP (CONICET, CCT - La Plata), Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115, 1900, La Plata, Argentina
| | - Delia Beatriz Soria
- CEQUINOR (CONICET, CCT - La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Bv. 120 no. 1465, 1900, La Plata, Argentina.
| |
Collapse
|
3
|
Ding B, Liu ZY, Gong XJ, Tang HM, Wang XG, Liu ZY, Dong HM, Liu J, Yang EC. Interlayer interaction-force-tuned magnetic responses in Co II-tetrazolate-carboxylate system from canted antiferromagnet to field-induced metamagnet. Dalton Trans 2023; 52:17477-17484. [PMID: 37953727 DOI: 10.1039/d3dt02851h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Interlayer magnetic couplings of low-dimensional magnets have significantly dominated magnetic behavior through skillful regulation of interlayer interacting forces. To identify interaction-force-regulated interlayer magnetic communications, two air-stable Co(II)-based coordination polymers (CPs), a well-isolated layered structure with approximately 12.6 Å interlayer separation and a carboxylate-extended three-dimensional framework with an inter-ribbon distance of 5.8 Å, have been solvothermally fabricated by varying polycarboxylate mediators in a ternary CoII-tetrazolate-carboxylate system. The layered CP with antiparallel-arranged {Co2(COO)2}n chains interconnected only via cyclic tetrazolyl linkages behaves as a spin-canted antiferromagnet with a Néel temperature of 2.6 K, due to strong intralayer antiferromagnetic couplings and negligible interlayer magnetic interactions. In contrast, the compact three-dimensional framework with corner-sharing Δ-ribbons tightly aggregated through μ2-η1:η1-COO- is a field-induced metamagnet from a canted antiferromagnet to a weak ferromagnet with a small critical field of Hc = 90 Oe. Apparently, these interesting magnetic responses reveal the importance of an interacting force from the magnetic subunits for the magnetic behavior of the molecular magnet, greatly enriching the magnetostructural correlations of transition-metal-based molecular magnets.
Collapse
Affiliation(s)
- Bo Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Zhong-Yi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Xin-Jing Gong
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Hui-Min Tang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Xiu-Guang Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Zheng-Yu Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Hui-Ming Dong
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jing Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - En-Cui Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
4
|
Qin Y, Wu Y, Luo S, Xi J, Guo Y, Ding Y, Zhang J, Liu X. Modulation of the magnetic dynamics of pentagonal-bipyramidal Co( ii) complexes by fine-tuning the coordination microenvironment. Dalton Trans 2022; 51:17089-17096. [DOI: 10.1039/d2dt02345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic magnetic behaviours of a series of Co(ii) SIMs with pentagonal-bipyramidal geometry have been modulated by an alteration of the ligand field effect.
Collapse
Affiliation(s)
- Yuanyuan Qin
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuewei Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jing Xi
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi Ding
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiangyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|