1
|
Guo B, Zhao J, Xu Y, Wen X, Ren X, Huang X, Niu S, Dai Y, Gao R, Xu P, Li S. Noble Metal Phosphides Supported on CoNi Metaphosphate for Efficient Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8939-8948. [PMID: 38334369 DOI: 10.1021/acsami.3c19077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Transition metal metaphosphates and noble metal phosphides prepared under similar conditions are potential hybrid catalysts for electrocatalytic water splitting, which is of great significance for H2 production. Herein, the structure and electrocatalytic activity of different noble metal species (i.e., Rh, Pd, Ir) on CoNiP4O12 nanoarrays have been systematically studied. Due to the different formation energies of noble metal phosphides, the phosphides of Rh (RhPx) and Pd (PdPx) as well as the noble metal Ir are obtained under the same phosphorylation conditions perspectively. RhPx/CoNiP4O12 and PdPx/CoNiP4O12 exhibit much better HER activity than Ir/CoNiP4O12 due to the advantages of phosphides. Density functional theory (DFT) calculations reveal that the extraordinary activity of RhPx/CoNiP4O12 originated from the strong affinity to H2O and optimal adsorption for H*. The best RhPx/CoNiP4O12 only requires a low overpotential of 30 and 234 mV to deliver 10 mA cm-2 for HER and OER, respectively, and therefore is effective for overall water splitting (requiring 1.57 V to achieve a current density of 10 mA cm-2). This work not only develops a novel RhPx/CoNiP4O12 electrocatalyst for overall water splitting but also provides deep insight into the formation mechanism of noble metal phosphides.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianying Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yao Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoxiao Huang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Siqi Niu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yulong Dai
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruhai Gao
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Han C, Zhu X, Ding J, Miao T, Huang S, Qian J. MOF-Derived Pt/ZrO 2 Carbon Electrocatalyst for Efficient Hydrogen Evolution. Inorg Chem 2022; 61:18350-18354. [DOI: 10.1021/acs.inorgchem.2c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xingchen Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Junyang Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Tingting Miao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
3
|
Burse S, Kulkarni R, Mandavkar R, Habib MA, Lin S, Chung YU, Jeong JH, Lee J. Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3283. [PMID: 36234409 PMCID: PMC9565602 DOI: 10.3390/nano12193283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Ultra-fine hydrogen produced by electrochemical water splitting without carbon emission is a high-density energy carrier, which could gradually substitute the usage of traditional fossil fuels. The development of high-performance electrocatalysts at affordable costs is one of the major research priorities in order to achieve the large-scale implementation of a green hydrogen supply chain. In this work, the development of a vanadium-doped FeBP (V-FeBP) microsphere croissant (MSC) electrocatalyst is demonstrated to exhibit efficient bi-functional water splitting for the first time. The FeBP MSC electrode is synthesized by a hydrothermal approach along with the systematic control of growth parameters such as precursor concentration, reaction duration, reaction temperature and post-annealing, etc. Then, the heteroatom doping of vanadium is performed on the best FeBP MSC by a simple soaking approach. The best optimized V-FeBP MSC demonstrates the low HER and OER overpotentials of 52 and 180 mV at 50 mA/cm2 in 1 M KOH in a three-electrode system. In addition, the two-electrode system, i.e., V-FeBP || V-FeBP, demonstrates a comparable water-splitting performance to the benchmark electrodes of Pt/C || RuO2 in 1 M KOH. Similarly, exceptional performance is also observed in natural sea water. The 3D MSC flower-like structure provides a very high surface area that favors rapid mass/electron-transport pathways, which improves the electrocatalytic activity. Further, the V-FeBP electrode is examined in different pH solutions and in terms of its stability under industrial operational conditions at 60 °C in 6 M KOH, and it shows excellent stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jae-Hun Jeong
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Korea
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Korea
| |
Collapse
|