1
|
Benner F, Jena R, Odom AL, Demir S. Magnetic Hysteresis in a Dysprosium Bis(amide) Complex. J Am Chem Soc 2025; 147:8156-8167. [PMID: 40013931 PMCID: PMC11912338 DOI: 10.1021/jacs.4c08137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Here, we present the synthesis and characterization of two mononuclear dysprosium molecules. The first complex is neutral and contains two triarylamide ligands coordinating to a DyIII ion that is additionally ligated to a chloride anion, in the form of (NHAr*)2DyCl (1). Treatment of 1 with Tl[BArF24] prompted the removal of the chloride as TlCl from the first coordination sphere to afford the mononuclear DyIII complex, [(NHAr*)2Dy][BArF24] (2), with a cationic [(NHAr*)2Dy]+ core. 1 and 2 were investigated through single-crystal X-ray diffraction analysis, UV-vis spectroscopy, and SQUID magnetometry. Both compounds are single-molecule magnets with magnetic hysteresis. The determined effective spin-reversal barriers and preattempt times for 1 and 2 are Ueff = 601(2) cm-1 and 598(2) cm-1, and τ0 = 4.2(1) × 10-10 s and 3.1(2) × 10-10 s, respectively. Ab initio calculations were conducted on both molecules which uncovered the energy of the crystal field states of DyIII and affirmed the effective energy barrier height. Notably, the extrusion of the halide ion has huge ramifications on the magnetic relaxation: While 1 features butterfly hysteresis loops up to 8 K that are closed at zero field at all temperatures probed, 2 exhibits a much higher magnetic blocking temperature of TB = 19.0 K and substantial coercivity of HC = 1.03 T. Remarkably, both the TB and HC observed for 2 constitute a record for mononuclear single-molecule magnets where the metal is either sandwiched by two arene ligands or stabilized by amide functionalities, respectively.
Collapse
Affiliation(s)
- Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rashmi Jena
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Aaron L Odom
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Shome S, Maurya NC, Mukherjee M, Adarsh KV, Konar S. Leveraging ligand conjugation to improve luminescence thermometry in Dy-single-molecule magnets. Chem Commun (Camb) 2025; 61:2337-2340. [PMID: 39807045 DOI: 10.1039/d4cc05874g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Extended ligand conjugation enhances luminescent thermometry in [Dy2(diketone)6(bipyrimidine)] SMMs, as substantiated by crystallographic, photoluminescence, and lifetime decay analyses. This conjugation facilitates rare direct energy transfer from the ligands' singlet state to the metal centers, as evidenced by the nanosecond excited-state lifetime of Dy(III).
Collapse
Affiliation(s)
- Shraoshee Shome
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India.
| | - Naresh Chandra Maurya
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India
| | - Moubani Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India.
| | - K V Adarsh
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India.
| |
Collapse
|
3
|
Wu J, Li J, Yang Q, Liu D, Tang J, Zhang B. Fine-Tuning the Anisotropies of Air-Stable Single-Molecule Magnets Based on Macrocycle Ligands. Inorg Chem 2025; 64:999-1006. [PMID: 39780613 DOI: 10.1021/acs.inorgchem.4c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Air-stable single-molecule magnets (SMMs) can be obtained by confining DyIII ion in a D6h coordination environment; however, most of the current efforts were focused on modifying the rigidity of the macrocycle ligand. Herein, we attempt to assemble air-stable SMMs based on macrocycles with a replaceable coordination site. By using an in situ 1 + 1 Schiff-base reaction of dialdehyde with diamine, three air-stable SMMs have been obtained in which one of the equatorial coordination sites can be varied from -NH- (for Dy-NH), -O- (for Dy-O), and -NMe- (for Dy-NMe). Complex Dy-NH shows a less distorted D6h symmetry and an anisotropy energy barrier of 1270 K. For complex Dy-O, the coordination site of -O- gives a relatively longer coordination bond but a comparable energy barrier in contrast with that of Dy-NH. In the case of complex Dy-NMe, although the -NMe-group gives a very long coordination bond, the large steric effect on the -NMe- group enforces a larger distortion of the D6h coordination geometry, resulting in the fast quantum tunneling of the magnetization that shortcuts the thermal relaxation process; therefore, Dy-NMe shows a lower energy barrier. This study provides a new strategy for modifying the coordinate site on the equatorial plane of D6h symmetry to fine-tune the structure and magnetic anisotropy of SMMs.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jingsong Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qianqian Yang
- Xi'an Rare Metal Materials Institute Co., Ltd., Xi'an 710016, P. R. China
| | - Dan Liu
- School of Science, Changchun Institute of Technology, Changchun 130012, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
4
|
Zhong X, Li DY, Cao C, Luo TK, Hu ZB, Peng Y, Liu SJ, Zheng YZ, Wen HR. Effect of Substituents in Equatorial Hexaazamacrocyclic Schiff Base Ligands on the Construction and Magnetism of Pseudo D6h Single-Ion Magnets. Inorg Chem 2024; 63:21909-21918. [PMID: 39482923 DOI: 10.1021/acs.inorgchem.4c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Three mononuclear DyIII compounds [DyL1(Ph3SiO)2][BPh4]·MeCN·2H2O (1), [DyL2(Ph3SiO)2][BPh4]·C2H5OH·H2O (2), and [DyL3(Ph3SiO)(OAc)][BPh4]·CH3OH·3H2O (3) and their corresponding YIII diluted analogues [Dy0.0967Y0.9033L1(Ph3SiO)2][BPh4]·MeCN·2H2O (1@Y), [Dy0.2668Y0.7332L2(Ph3SiO)2][BPh4]·C2H5OH·H2O (2@Y), and [Dy0.1260Y0.8740L3(Ph3SiO)(OAc)][BPh4]·CH3OH·3H2O (3@Y) were synthesized with hexaazamacrocyclic Schiff base ligands as an equatorial ligand. The substituents in the equatorial hexaazamacrocyclic Schiff base ligand show a significant effect on the replacement of the axial ligands. Compounds 1, 2, and 3 are typical zero dc field single-molecule magnets with effective energy barriers (Ueff) of 1092(6), 946.1(7), and 150.1(9) K, respectively. Although the effective energy barriers of 1 and 2 are close, the magnetic hysteresis remains open up to 20 K for 1, twice as large as that of 2 (10 K), which is different from the previously reported compounds, probably due to nonplanarity N6 in the equator. Ab initio calculations indicate that the ground states of compounds 1 and 2 exhibit high anisotropy and pure second and third excited states, while compound 3 exhibits pure ground-state anisotropy and highly mixed excited states, leading to the easy occurrence of quantum tunneling of magnetization between the ground and excited states in compound 3. This work indicates that the substituents in equatorial hexaazamacrocyclic Schiff base ligands have a significant effect on the construction and magnetic properties of DyIII SIMs with D6h symmetry.
Collapse
Affiliation(s)
- Xiang Zhong
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Dong-Yang Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, P. R. China
| | - Chen Cao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Tong-Kai Luo
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Zhao-Bo Hu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| |
Collapse
|
5
|
Armenis AS, Mondal A, Giblin SR, Raptopoulou CP, Psycharis V, Alexandropoulos DI, Tang J, Layfield RA, Stamatatos TC. Unveiling new [1+1] Schiff-base macrocycles towards high energy-barrier hexagonal bipyramidal Dy(III) single-molecule magnets. Chem Commun (Camb) 2024; 60:12730-12733. [PMID: 39397697 DOI: 10.1039/d4cc04551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The employment of the [1+1] condensation approach for the preparation of new macrocyclic scaffolds (LN6 and LN3O3) towards high-performance Dy(III) single-molecule magnets (SMMs) with pseudo-D6h symmetry is described. Engineering of the macrocycles denticity from LN6 to LN3O3 leads to a mononuclear SMM with a large Ueff value of 1300 K. The experimental results are supported by ab initio calculations, which indicate relaxation of the magnetization via the second-excited state.
Collapse
Affiliation(s)
| | - Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QR, UK.
| | - Sean R Giblin
- School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
| | - Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi Attikis 15310, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi Attikis 15310, Greece
| | | | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QR, UK.
| | | |
Collapse
|
6
|
Gawryszewska P, Ślepokura K, Lisowski J. Triple-Decker Hexaazamacrocyclic Lanthanide(III) Complexes: Structure, Magnetic Properties, and Temperature-Dependent Luminescence. Inorg Chem 2024; 63:15875-15887. [PMID: 39120757 DOI: 10.1021/acs.inorgchem.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The reaction of fluoride anions with mononuclear rare-earth(III) complexes of the hexaazamacrocycle derived from 2,6-diformylpyridine and ethylenediamine affords trinuclear coordination compounds [Ln3L3(μ2-F)4(NO3)2](NO3)3. The X-ray crystal structures of these complexes show triplex cationic complexes where the three roughly parallel macrocyclic lanthanide(III) units are linked by bis-μ2-F bridges. The detailed analysis of the photophysical properties of the [Eu3L3(μ2-F)4(NO3)2](NO3)3·2H2O and [Tb3L3(μ2-F)4(NO3)2](NO3)3·3H2O complexes reveals different temperature dependence of luminescence intensity and luminescence decay time of the Eu(III) and Tb(III) derivatives. The spectra of mixed species of average composition [Eu1.5Tb1.5L3(μ2-F)4(NO3)2](NO3)3·3H2O are in accordance with the ratiometric luminescent thermometer behavior. Measurements of the direct-current (dc) magnetic susceptibility of the [Dy3L3(μ2-F)4(NO3)2](NO3)3·2H2O complex indicate possible ferromagnetic interactions between the Dy(III) ions. Alternating current (ac) susceptibility measurements of this complex indicate single-molecule magnet behavior in zero dc field with magnetic relaxation dominated by Orbach mechanism and an effective energy barrier Ueff = 12.3 cm-1 (17.7 K) with a pre-exponential relaxation time, τ0 of 7.3 × 10-6 s. A similar reaction of mononuclear macrocyclic complexes with a higher number of fluoride equivalents results in polymeric {[Ln3L3(μ2-F)5](NO3)4}n complexes. The X-ray crystal structure of the Nd(III) derivative of this type shows trinuclear units that are additionally linked by single fluoride bridges to form a linear coordination polymer.
Collapse
Affiliation(s)
- Paula Gawryszewska
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Katarzyna Ślepokura
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Jerzy Lisowski
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| |
Collapse
|
7
|
Xu W, Luo Q, Li Z, Zhai Y, Zheng Y. Bis-Alkoxide Dysprosium(III) Crown Ether Complexes Exhibit Tunable Air Stability and Record Energy Barrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308548. [PMID: 38400593 PMCID: PMC11077650 DOI: 10.1002/advs.202308548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Indexed: 02/25/2024]
Abstract
High-performance and air-stable single-molecule magnets (SMMs) can offer great convenience for the fabrication of information storage devices. However, the controversial requisition of high stability and magnetic axiality is hard to balance for lanthanide-based SMMs. Here, a family of dysprosium(III) crown ether complexes possessing hexagonal-bipyramidal (pseudo-D6h symmetry) local coordination geometry with tunable air stability and effective energy barrier for magnetization reversal (Ueff) are shown. The three complexes share the common formula of [Dy(18-C-6)L2][I3] (18-C-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; L = I, 1; L = OtBu 2 and L = 1-AdO 3). 1 is highly unstable in the air. 2 can survive in the air for a few minutes, while 3 remains unchanged in the air for more than 1 week. This is roughly in accordance with the percentage of buried volumes of the axial ligands. More strikingly, 2 and 3 show progressive enhancement of Ueff and 3 exhibits a record high Ueff of 2427(19) K, which significantly contributes to the 100 s blocking temperature up to 11 K for Yttrium-diluted sample, setting a new benchmark for solid-state air-stable SMMs.
Collapse
Affiliation(s)
- Wen‐Jie Xu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Qian‐Cheng Luo
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Zi‐Han Li
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Yuan‐Qi Zhai
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Yan‐Zhen Zheng
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| |
Collapse
|
8
|
Zhao C, Wang T, Liu X, Zhu Z, Ying X, Li XL, Tang J. Peroxido-bridged chiral double-decker dysprosium macrocycles. Dalton Trans 2023; 52:15456-15461. [PMID: 37466249 DOI: 10.1039/d3dt01540h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lanthanide peroxides show high reactivity in oxidative coupling of methane (OCM). However, the number of isolated and structurally characterized molecular species remains relatively small. To the best of our knowledge, homochiral molecule-based lanthanide peroxides have not been reported. Herein, two pairs of side-on peroxido-bridged dinuclear hexaazamacrocyclic dysprosium enantiomers with formulas [Dy2(LES/R)2L2O2](BPh4)2·CH3OH·CH3CN (where LE is derived from the condensation reaction between (1S,2S)/(1R,2R)-1,2-diphenylethylenediamine and 2,6-diformylpyridine; HL = 2,6-diphenylphenol) (1/2) and [Dy2(LES/R)2Cl2O2](BPh4)2·2CH3CN (3/4) are specially designed and created with the help of hydrogen peroxide. The out-of-phase alternating-current magnetic susceptibility of 1/2 gives rise to frequency-dependent peaks between 6 and 32 K under a zero applied direct current (dc) field, while no peak at any temperature and frequency was observed for 3/4 implying the presence of a weak axial crystal field (CF).
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tingting Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaodong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu Ying
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
9
|
Miao L, Liu MJ, Zeng M, Kou HZ. Chiral Zn 3Ln 3 Hexanuclear Clusters of an Achiral Flexible Ligand. Inorg Chem 2023; 62:12814-12821. [PMID: 37535927 DOI: 10.1021/acs.inorgchem.3c01449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Multifunctional single-molecule magnets (SMMs) have sparked great interest, but chiral SMMs obtained via spontaneous resolution are rarely reported. We synthesized a series of chiral trinuclear hepta-coordinate lanthanide complexes [ZnII3LnIII3] (1 for Dy, 2 for Tb, 3 for Gd, and 4 for Dy0.07Y0.93) using the achiral flexible ligand H2L (2,2'-[1,2-ethanediylbis[(ethylimino)methylene]]bis[3,5-dimethylphenol]). The complexes crystallize in the chiral P63 group space, and two enantiomers of different chirality are spontaneously resolved. Three [Zn(L)Cl]- anions utilize the two phenoxy oxygen atoms of each L2- to coordinate with three lanthanide ions, respectively, and the three hepta-coordinate D5h lanthanide ions are arranged in a triangle. The chirality comes from the propeller arrangement of the peripheral three bidentate chelate L2- ligands like octahedral [M(AA)3]n+/- (M = transition metal ions; AA = bidentate chelate ligands, e.g., 2,2'-bipyridine, 1,10-phenathroline, ethylenediamine, acac- or oxalate). Complex 1 exhibits an AC susceptibility signal and is frequency-dependent, which is typical of SMMs. Complex 4, doped with a large amount of diamagnetic Y(III) in Dy(III), exhibits Ueff = 48.3 K and τ0 = 4.4 × 10-8 s in experiments. Complex 2 shows circularly polarized luminescence and apparent photoluminescence, typical of the f-f transitions of Tb(III).
Collapse
Affiliation(s)
- Lin Miao
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Mei-Jiao Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
10
|
Bhanja A, Roy Chaudhuri S, Canaj AB, Vyas SP, Ortu F, Smythe L, Murrie M, Goswami R, Ray D. Synthesis and characterization of two self-assembled [Cu 6Gd 3] and [Cu 5Dy 2] complexes exhibiting the magnetocaloric effect, slow relaxation of magnetization, and anticancer activity. Dalton Trans 2023; 52:3795-3806. [PMID: 36866587 DOI: 10.1039/d2dt03932j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Two new paths for coordination driven self-assembly reactions under the binding support of 2-((1-hydroxy-2-methylpropan-2-ylimino)methyl)-6-methoxyphenol (H2L) have been discovered from the reactions of Cu(ClO4)2·6H2O, NEt3 and GdCl3/DyCl3·6H2O in MeOH/CHCl3 (2 : 1) medium. A similar synthetic protocol is useful to provide two different types of self-aggregated molecular clusters [Cu6Gd3(L)3(HL)3(μ3-Cl)3(μ3-OH)6(OH)2]ClO4·4H2O (1) and [Cu5Dy2(L)2(HL)2(μ-Cl)2(μ3-OH)4(ClO4)2(H2O)6](ClO4)2·2NHEt3Cl·21H2O (2). The adopted reaction procedure established the importance of the HO- and Cl- ions in the mineral-like growth of the complexes, derived from solvents and metal ion salts. In the case of complex 1, one GdIII center has been trapped at the central position of the core upheld by six μ3-OH and three μ3-Cl groups, whereas for complex 2 one CuII center was trapped using four μ3-hydroxo and two μ-chlorido groups. The magnetothermal behavior of 1 has been examined for a magnetocaloric effect of -ΔSm = 11.3 J kg-1 K-1 at 2 K for ΔH = 7 T, whereas the magnetic susceptibility measurements of 2 showed slow magnetic relaxation with Ueff = 15.8 K and τ0 = 9.8 × 10-7 s in zero external dc field. Cancer cell growth inhibition studies proved the potential of both the complexes with interestingly high activity for the Cu6Gd3 complex against human lung cancer cells. Both complexes 1 and 2 also exhibited DNA and human serum albumin (HSA) binding abilities in relation to the involved binding sites and thermodynamics.
Collapse
Affiliation(s)
- Avik Bhanja
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
- Department of Chemistry, Indian Institute of Technology Bombay, Powai 400076, India
| | | | - Angelos B Canaj
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Shachi Pranjal Vyas
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Fabrizio Ortu
- School of Chemistry, University of Leicester, LE1 7RH Leicester, UK
| | - Lucy Smythe
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Mark Murrie
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Ritobrata Goswami
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Debashis Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
11
|
Mironov VS, Bazhenova TA, Manakin YV, Yagubskii EB. Pentagonal-bipyramidal 4d and 5d complexes with unquenched orbital angular momentum as a unique platform for advanced single-molecule magnets: current state and perspectives. Dalton Trans 2023; 52:509-539. [PMID: 36537237 DOI: 10.1039/d2dt02954e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article overviews the current state and prospects of the concept of advanced single-molecule magnets (SMMs) based on low-spin (S = 1/2) pentagonal-bipyramidal (PBP) 4d3 and 5d3 complexes with unquenched orbital angular momentum. This approach is based on the unique property of PBP 4d3 and 5d3 complexes to cause highly anisotropic spin coupling of perfect uniaxial symmetry, -JzSziSzj - Jxy(SxiSxj + SyiSyj), regardless of the local geometric symmetry. The M(4d/5d)-M(3d) exchange-coupled pairs in the apical positions of the PBP complexes produce Ising-type exchange interactions (|Jz| > |Jxy|), which serve as a powerful source of uniaxial magnetic anisotropy of a SMM cluster. In polynuclear heterometallic 4d/5d-3d complexes embodying PBP 4d/5d units and high-spin 3d ions, anisotropic Ising-type exchange interactions produce a double-well potential with high energy barriers Ueff, which is controlled by the anisotropic exchange parameters Jz, Jxy. Theoretical analysis shows that the barrier is proportional to the difference |Jz - Jxy| and to the number n of the apical 4d/5d-3d pairs in a SMM cluster, Ueff ∝ |Jz - Jxy|n, which provides an opportunity to scale up the barrier Ueff and blocking temperature TB up to the record values. A novel family of 4d/5d complexes with forced PBP coordination provided by structurally rigid planar pentadentate Schiff-base ligands in the equatorial plane is discussed as a better alternative to the cyanometallates. The possibility of a significant increase in the anisotropic exchange parameters Jz, Jxy in PBP complexes with monoatomic apical μ-bridging ligands is examined. The basic principles of molecular engineering the highest barrier through anisotropic exchange interactions of PBP 4d/5d complexes are formulated. The theoretical and experimental results taken together indicate that the concept of high-performance SMMs based on 4d/5d PBP complexes with unquenched orbital angular momentum is an attractive alternative to the currently dominant lanthanide-based SMM strategy.
Collapse
Affiliation(s)
- V S Mironov
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia. .,Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" RAS, Moscow, Russia
| | - T A Bazhenova
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia.
| | - Yu V Manakin
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia.
| | - E B Yagubskii
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia.
| |
Collapse
|
12
|
Synthesis, Luminescence and magnetic properties of dinuclear complexes based on a “pincer” Schiff base and different β-diketonate ligands. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Georgiev M, Chamati H. Single-Ion Magnets with Giant Magnetic Anisotropy and Zero-Field Splitting. ACS OMEGA 2022; 7:42664-42673. [PMID: 36467950 PMCID: PMC9713882 DOI: 10.1021/acsomega.2c06119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their potential technological applications. More specifically, single-ion magnets are peculiarly attractive by virtue of their rich quantum behavior and distinct fine structure. These are viable candidates for implementation as single-molecule high-density information storage devices and other applications in future quantum technologies. The present review presents the comprehensive state of the art in the topic of single-ion magnets possessing an eminent magnetization-reversal barrier, very slow magnetic relaxation and high blocking temperature. We turn our attention to the achievements in the synthesis of 3d and 4f single-ion magnets during the last two decades and discuss the observed magnetostructural properties underlying the anisotropy behavior and the ensuing remanence. Furthermore, we highlight the fundamental theoretical aspects to shed light on the complex behavior of these nanosized magnetic entities. In particular, we focus on key notions, such as zero-field splitting, anisotropy energy and quantum tunneling of the magnetization and their interdependence.
Collapse
Affiliation(s)
- Miroslav Georgiev
- G Nadjakov Institute of Solid State
Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784Sofia, Bulgaria
| | - Hassan Chamati
- G Nadjakov Institute of Solid State
Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784Sofia, Bulgaria
| |
Collapse
|