1
|
Zhou H, Cheng M, Chu D, Liu X, An R, Pan S, Yang Z. Sulfate Derivatives with Heteroleptic Tetrahedra: New Deep-Ultraviolet Birefringent Materials in which Weak Interactions Modulate Functional Module Ordering. Angew Chem Int Ed Engl 2024:e202413680. [PMID: 39143747 DOI: 10.1002/anie.202413680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Deep-ultraviolet (UV) birefringent materials are urgently needed to facilitate light polarization in deep-UV lithography. Maximizing anisotropy by regulating the alignment of functional modules is essential for improving the linear optical performance of birefringent materials. In this work, we proposed a strategy to design deep-UV birefringent materials that achieve functional module ordering via weak interactions. Following this strategy, four compounds CN4H7SO3CF3, CN4H7SO3CH3, C(NH2)3SO3CH3, and C(NH2)3SO3CF3 were identified as high-performance candidates for deep-UV birefringent materials. The millimeter-sized crystals of CN4H7SO3CF3, CN4H7SO3CH3, and C(NH2)3SO3CH3 were grown, and the transmittance spectra show that their cutoff edges are below 200 nm. CN4H7SO3CF3 exhibits the largest birefringence (0.149 @ 546 nm, 0.395 @ 200 nm) in the deep-UV region among reported sulfates and sulfate derivatives. It reveals that the hydrogen bond can modulate the module ordering of the heteroleptic tetrahedra and planar π-conjugated cations, thus greatly enhancing the birefringence. Our study not only discovers new deep-UV birefringent materials but also provides an upgraded strategy for optimizing optical anisotropy to achieve efficient birefringence.
Collapse
Affiliation(s)
- Huan Zhou
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Cheng
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
| | - Ran An
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Wang D, Luo H, Wang T, Dong X, Cao L, Huang L, Zou G. Gradual Increase in Birefringence of Antimony Oxalates through Precise Tuning of the Sb 3+/[C 2O 4] 2- Ratio. Inorg Chem 2024; 63:13793-13799. [PMID: 38987980 DOI: 10.1021/acs.inorgchem.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Birefringent crystals play a crucial role in modulating and controlling the polarization of light in the optical communication and laser industries. Recently, adopting appropriate strategies to enhance the birefringence of crystals has become a prominent area of research focus. Herein, four UV antimony oxalate birefringent crystals, namely, K5Sb2(C2O4)5.5·3H2O, BaSb(C2O4)2.5·3H2O, Na4Sb2O(C2O4)4·6H2O, and Na3Sb(C2O4)2F2·2H2O, have been successfully synthesized. These compounds feature a similar zero-dimensional (0D) cluster structure and share the same functional groups, including π-conjugated [C2O4]2- groups and Sb3+-based distorted polyhedra with stereochemically active lone pairs (SCALPs). Interestingly, we achieved a stepwise increase in birefringence by precisely controlling the Sb3+/[C2O4]2- ratio, ultimately resulting in the compound Na3Sb(C2O4)2F2·2H2O exhibiting a large birefringence (0.21@546 nm). Additionally, we confirmed that the synergistic effects between the π-conjugated [C2O4]2- groups and the distorted polyhedra based on Sb3+ are responsible for the excellent optical properties observed in the reported compounds.
Collapse
Affiliation(s)
- Dan Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Han Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Tingyu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Lv MH, Li SF, Wang J, Wang JX, Tang RL, Huang H, Zhang B, Yan D. (C 4H 6N 3O)(HSO 4): A Cytosinium Bisulfate with Large Birefringence and Moderate Second Harmonic Generation Effect Produced via Combining a Promising Planar Nonlinear Optical-Active Motif with a Tetrahedral Group. Inorg Chem 2024; 63:10943-10948. [PMID: 38818955 DOI: 10.1021/acs.inorgchem.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Investigating novel nonlinear optical (NLO) active units serves as a valuable method for broadening the research landscape of NLO materials. This study showcases the potential of the cytosinium cation (C4H6N3O)+ as a novel NLO-active motif through theoretical calculations. The title compound exhibited a wide band gap of 3.85 eV, along with a moderate second harmonic generation (SHG) response of 1.65 times that of KH2PO4 (KDP) and significant birefringence of 0.47. Its exceptional optical properties are primarily attributed to the synergy interaction between cations and anionic groups in the asymmetric unit.
Collapse
Affiliation(s)
- Meng-Han Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jing Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Jia-Xin Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Hongbo Huang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
4
|
Wang Y, Dong X, Huang L, Zeng H, Lin Z, Zou G. Two Short-Wave UV Beryllium Selenites Exhibiting Diverse Optical Properties Stemming from Functional Group Arrangements. Inorg Chem 2024; 63:10854-10859. [PMID: 38781121 DOI: 10.1021/acs.inorgchem.4c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The arrangement of functional groups exerts a crucial role in determining the characteristics of compounds. In this study, we synthesized two novel short-wave ultraviolet (UV) nonlinear optical (NLO) crystals: KBe2(SeO3)2(OH)·H2O and K2Be(SeO3)2. Interestingly, the two compounds show the same SeO3 triangular pyramids and K-O polyhedra. However, the two compounds exhibit distinct beryllium-oxygen anion groups: BeO3(OH) for KBe2(SeO3)2(OH)·H2O and BeO4 for K2Be(SeO3)2. This results in the SeO3 groups within the structure having different orientations, ultimately leading to the two compounds exhibiting completely different optical properties. KBe2(SeO3)2(OH)·H2O displays a large second harmonic generation (SHG) effect equivalent to 2× KH2PO4 (KDP), coupled with a large birefringence of 0.078 at 546 nm. In contrast, the SHG effect and birefringence of K2Be(SeO3)2 are only 0.33× that of KDP and 0.024 at 546 nm, respectively. Structural analyses and theoretical calculations indicate that these pronounced differences in optical properties stem from variations in the arrangement of the SeO3 functional groups. This study not only sheds light on the correlation between crystal structure and optical behavior but also presents a hopeful avenue for the advancement of materials in the short-wave UV spectrum.
Collapse
Affiliation(s)
- Yurui Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
5
|
Bai Z, Ok KM. Exceptional Optical Anisotropy Enhancement Achieved Through Dual-Ions Cosubstitution Strategy in Novel Hybrid Bismuth Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311391. [PMID: 38233208 DOI: 10.1002/smll.202311391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Guided by a superb dual-ions cosubstitution strategy, two novel, highly optically anisotropic hybrid bismuth halides are designed and synthesized. The first compound, Gu3Bi2NO3Cl8 (Gu = C(NH2)3), is developed using the 2D perovskite halide Cs3Bi2Cl9 as the maternal structure. This involved substituting all Cs+ cations with organic Gu+ and replacing some Cl- anions with [NO3]-. Further substitution of Cl- with additional [NO3]- resulted in the formation of nitrate-rich Gu2Bi(NO3)3Cl2 crystal, exhibiting a 3.4-fold increase in [NO3]- per unit volume. Both compounds have a structurally 0D nature, comprising bismuth-centered polyhedra formed by coordinated chlorides and monodentate/bidentate nitrate moieties, with Gu+ serving as a separator and linker. Notably, the presence of superb optically anisotropic dual-ions, i.e., planar Gu+ and [NO3]-, enables these crystals to possess sharply enhanced optical anisotropy, with birefringence values more than 1 order of magnitude higher than that of the initial crystal Cs3Bi2Cl9 (0.162/0.186vs 0.011 at 546 nm). The discovery and characterization of Gu3Bi2NO3Cl8 and Gu2Bi(NO3)3Cl2 crystals provide new insights into achieving expected modifications in optical properties through the utilization of a dual-ions cosubstitution strategy.
Collapse
Affiliation(s)
- Zhiyong Bai
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
6
|
Ding M, Wu Q, Shen Y, Hong J, Dong G, Ma L. (C 8H 7N 2O 2) 2[Bi 2Br 8]·2H 2O and (C 8H 7N 2O 2) 6[Bi 2Cl 10]Cl 2·2H 2O: Exploring Birefringent Crystals in Hybrid Halide Systems. Inorg Chem 2024; 63:9701-9705. [PMID: 38728855 DOI: 10.1021/acs.inorgchem.3c04476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, new hybrid birefringent crystals of (C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O were successfully synthesized by introducing a new birefringent group [C8H7N2O2]+ by a simple aqueous solution evaporation method. They crystallize in the P21/n space group, and their structure consists mainly of the π-conjugated group [C8H7N2O2]+ and the octahedron centered on Bi3+. By first-principles calculations, the birefringence response comes from the [C8H7N2O2]+ group with a planar π-conjugated structure. Meanwhile, the synthesis, structure, first-principles calculations, and optical properties are reported in this paper.
Collapse
Affiliation(s)
- Mingliang Ding
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Qiong Wu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yaoguo Shen
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jinquan Hong
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Guofa Dong
- Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Liang Ma
- Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
7
|
Li PF, Hu CL, Li YF, Mao JG, Kong F. Hg 4(Te 2O 5)(SO 4): A Giant Birefringent Sulfate Crystal Triggered by a Highly Selective Cation. J Am Chem Soc 2024; 146:7868-7874. [PMID: 38457655 DOI: 10.1021/jacs.4c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Sulfate crystals are often criticized for their low birefringence. The small anisotropic SO4 group is becoming the biggest bottleneck hindering the application of sulfates in optical functional materials. In this study, we report a new method to significantly enhance the birefringence of sulfates. The title compound increases the birefringence recording of sulfates to 0.542@546 nm, which is significantly larger than that of the commercial birefringent crystal of TiO2 (0.306@546.1 nm). At the infrared wavelength, the birefringence of Hg4(Te2O5)(SO4) can be up to 0.400@1064 nm, which is also much larger than the infrared birefringent crystal of YVO4 (0.209@1064 nm). In addition, it also has a wide transparency range, high thermal stability, and excellent environmental stability, making it a potential birefringent material. Hg4(Te2O5)(SO4) features a novel two-dimensional layered structure composed of [Hg4(Te2O5)]2+ layers separated by isolated (SO4)2- tetrahedra. This compound was designed by introducing a highly selective cation in a tellurite sulfate system. The low valence low coordination cations connect with tellurite groups only, making the sulfate isolated in the structure. The steric repulsive action of the isolated SO4 tetrahedra may regulate the linear and lone pair groups arranged in a way that favors large birefringence. This method can be proven by theoretical calculations. PAWED studies showed that the large birefringence originated from the synergistic effect of (Hg2O2)2-, (Te2O5)2-, and (SO4)2- units, with a contribution ratio of 42.17, 37.92, and 19.88%, respectively. Our work breaks the limitation of low birefringence in sulfates and opens up new possibilities for their application as birefringent crystals.
Collapse
Affiliation(s)
- Peng-Fei Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ya-Feng Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Fang Kong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
8
|
Lv MH, Li SF, Ren MM, Wang JX, Tang RL, Chen J, Huang H, Zhang B, Yan D. [C(NH 2) 3] 6Mo 7O 24: A Guanidinium Molybdate as a UV Nonlinear Optical Crystal with Large Birefringence. Inorg Chem 2024; 63:3948-3954. [PMID: 38350031 DOI: 10.1021/acs.inorgchem.3c04344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The key to searching novel nonlinear optical (NLO) crystals was effectively combining the NLO-active units to obtain a noncentrosymmetric structure. Nevertheless, the present predicament lies in the growing challenge of discovering novel crystals within conventional inorganic frameworks that surpass the properties of the current NLO materials. In view of this, researchers expanded their research focus to the organic-inorganic hybridization system; it is foreseeable to concentrate the advantages from several kinds of NLO-active units to acquire novel NLO crystals with superior properties. We herein report an organic-inorganic hybrid molybdate crystal, namely, [C(NH2)3]6Mo7O24 (GMO). It was successfully obtained via combining inorganic NLO-active MoO6 octahedra and organic π-conjugated [C(NH2)3]+ groups. GMO demonstrates a moderate second-harmonic-generation response, specifically measuring about 1.3 times the value of KDP. Additionally, it exhibits a significant birefringence value of 0.203 at the wavelength of 550 nm and possesses a wide band gap of 3.31 eV. Theoretical calculations suggest that the optical properties of the GMO are primarily influenced by the synergy effect of [C(NH2)3]+ groups between MoO6 octahedra.
Collapse
Affiliation(s)
- Meng-Han Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Meng-Meng Ren
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Jia-Xin Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jin Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, China
| | - Hongbo Huang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
9
|
Bai Z, Kuk Y, Lee J, Kim H, Ok KM. Guanidinium Vanadate [C(NH 2) 3] 3VO 4·2H 2O Revealing Enhanced Second-Harmonic Generation and Wide Band Gaps. Inorg Chem 2024; 63:3578-3585. [PMID: 38315816 DOI: 10.1021/acs.inorgchem.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A new guanidinium-templated vanadate, [C(NH2)3]3VO4·2H2O, has been synthesized in a phase-pure form. It crystallizes in a noncentrosymmetric polar space group, Cc, and the crystal structure is built upon a framework of guanidinium, vanadate tetrahedra, and water molecules linked by hydrogen bonds. Notably, optical measurements reveal that the material exhibits an approximately 9.6-fold enhancement in second-harmonic generation efficiency compared to its phosphate analogue. The enhancement can be attributed to the increased geometrical distortion of the VO4 tetrahedra. Furthermore, we found that the coordination number of the central vanadium atom significantly affects the optical band gaps. Among various coordination numbers, the 4-coordinate VO4 tetrahedra are found to be more favorable for widening the optical band gap of materials compared to the 5- and 6-coordinate vanadium polyhedra, as demonstrated by this work.
Collapse
Affiliation(s)
- Zhiyong Bai
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Yunseung Kuk
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jihyun Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Heewon Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
10
|
Lan Y, Luo H, Wang L, Huang L, Cao L, Dong X, Zou G. Two Short-Wave UV Antimony(III) Sulfates Exhibiting Large Birefringence. Inorg Chem 2024; 63:2814-2820. [PMID: 38265337 DOI: 10.1021/acs.inorgchem.3c04404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In the present work, we have successfully obtained two new UV antimony-based sulfates, NH4Sb(SO4)2 and Ca2Sb2O(SO4)4, by a conventional hydrothermal method. Interestingly, both compounds share similar structural building blocks, such as SbO4 seesaws and SO4 tetrahedra, yet they endow discrepant birefringence values measured at 546 nm with values of 0.150 and 0.114, respectively, owing to the different distortions of the SbO4 groups with SCALP electrons. Moreover, both compounds display large band gaps (4.32 and 4.43 eV, respectively), so they can be used as short-wavelength UV birefringent materials. Moreover, NH4Sb(SO4)2 is a noncentrosymmetric compound, showing a frequency doubling effect of 0.2 × KDP. Detailed structural analyses and calculations confirm the source of superior optical performance and the reasons for the different birefringence of the two compounds. This work provides ideas for the following discovery of antimony-based optical materials with excellent properties.
Collapse
Affiliation(s)
- Yang Lan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Han Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Luli Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
11
|
Liu Y, Long Y, Zeng W, Tian Y, Zeng H, Dong X, Lin Z, Zou G. Two van der Waals Layered Antimony(III) Phosphites as UV Optical Materials. Inorg Chem 2023; 62:19135-19141. [PMID: 37947127 DOI: 10.1021/acs.inorgchem.3c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Herein, two new Sb3+-based phosphites, Sb2O2(HPO3) (I) and Sb2O(HPO3)2 (II), were successfully obtained by ingeniously combining Sb3+-based polyhedra containing stereochemically active lone pair (SCALP) and HPO3 polar groups. Both reported compounds exhibit unique 2D van der Waals layered structures, [Sb4O4(HPO3)2]∞ and [Sb2O(HPO3)2]∞, respectively, which favors compounds with large optical anisotropy. Interestingly, the different curvatures of the two layers resulted in the two title compounds showing significantly different birefringences (0.079@546 and 0.046@546 nm, respectively). Both compounds endow wide optical band gaps (4.32 and 4.54 eV, respectively), which indicates their potential as promising ultraviolet (UV) birefringent crystals. The synthesis of the two title compounds enriched Sb3+-based phosphites in the UV region and provided guidance for the subsequent synthesis of superior optical materials.
Collapse
Affiliation(s)
- Yuxi Liu
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Ying Long
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Zeng
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Yao Tian
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
12
|
Yan D, Ren MM, Liu Q, Mao FF, Ma Y, Tang RL, Huang H, Zhang B, Zhang XD, Li SF. [C(NH 2) 2NHNO 2][C(NH 2) 3](NO 3) 2: A Mixed Organic Cationic Hybrid Nitrate with an Unprecedented Nonlinear-Optical-Active Unit. Inorg Chem 2023; 62:4757-4761. [PMID: 36916671 DOI: 10.1021/acs.inorgchem.3c00556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We herein report a mixed organic cationic hybrid nitrate, namely, [C(NH2)2NHNO2][C(NH2)3](NO3)2 (1). It was successfully achieved via combining three different planar groups: [(C(NH2)2NHNO2]+, C(NH2)3+, and NO3-. First-principles calculations confirm that the [(C(NH2)2NHNO2]+ group is an excellent cationic nonlinear-optical (NLO)-active unit. The title compound exhibits a moderate second-harmonic-generation (SHG) response (1.5 × KDP), a wide band gap (3.58 eV), and a suitable birefringence of 0.071 at 550 nm. Theoretical calculations indicate that the synergy effect between the [(C(NH2)2NHNO2]+ and C(NH2)3+ groups dominates the SHG process.
Collapse
Affiliation(s)
- Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Meng-Meng Ren
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Qian Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Fei-Fei Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.,College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yu Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Hongbo Huang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Xiu-Du Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
13
|
Yan Q, Dong X, Huang L, Zhou Y, Lin Z, Zou G. Two Mixed-Alkali-Metal Selenates as Short-Wave Ultraviolet Nonlinear-Optical Materials. Inorg Chem 2023; 62:4752-4756. [PMID: 36912489 DOI: 10.1021/acs.inorgchem.3c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Two novel mixed-alkali-metal selenate nonlinear-optical (NLO) crystals, Na3Li(H2O)3(SeO4)2·3H2O (I) and CsLi3(H2O)(SeO4)2 (II), have been successfully synthesized by an aqueous solution evaporation method. Both compounds feature the unique layers constructed of the same functional moieties including SeO4 and LiO4 tetrahedra: [Li(H2O)3(SeO4)2·3H2O]∞3- layers in I and [Li3(H2O)(SeO4)2]∞- layers in II. The titled compounds display wide optical band gaps of 5.62 and 5.66 eV, respectively, according to the UV-vis spectra. Interestingly, they exhibit significantly different second-order nonlinear coefficients (0.34 × KDP and 0.70 × KDP, respectively). Detailed dipole moment calculations manifest that the large disparity can be attributed to the difference in the dipole moment of the crystallographically independent SeO4 and LiO4 groups. This work confirms that alkali-metal selenate system is an excellent candidate for short-wave ultraviolet NLO materials.
Collapse
Affiliation(s)
- Qian Yan
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yuqiao Zhou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
14
|
Long Y, Dong X, Huang L, Zeng H, Lin Z, Zou G. SbHPO 3F: 2D van der Waals Layered Phosphite Exhibiting Large Birefringence. Inorg Chem 2022; 61:16997-17001. [PMID: 36264600 DOI: 10.1021/acs.inorgchem.2c03266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel antimony(III)-based phosphite, SbHPO3F, featuring a unique two-dimensional (2D) van der Waals layered structure, has been successfully designed and synthesized via the simultaneous employment of optically active moieties including SbO3F seesaw and tetrahedral HPO3 groups. Its optimized layered arrangement formed by the alternating connection of 4-membered rings (4-MRs) and 8-MRs endows the title compound with desirable optical properties including a large birefringence and short ultraviolet (UV) cutoff edge, implying that it is a potential UV birefringent material.
Collapse
Affiliation(s)
- Ying Long
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
15
|
Dong X, Long Y, Huang L, Cao L, Gao D, Bi J, Zou G. Large optical anisotropy differentiation induced by the anion-directed regulation of structures. Inorg Chem Front 2022. [DOI: 10.1039/d2qi02009b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The modulation of optical anisotropy for two novel UV birefringent materials [C(NH2)3]2Sb3F3(HPO3)4 and [C(NH2)3]SbFPO4·H2O has been successfully achieved via anion-directing regulation structures.
Collapse
Affiliation(s)
- Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ying Long
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|