1
|
Mishra S, Baghel AS, Kumar A. Cp*Co(III)-catalyzed synthesis of isoquinolones via controlled annulation of primary arylamides with internal alkynes. Org Biomol Chem 2025; 23:427-439. [PMID: 39575981 DOI: 10.1039/d4ob01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In this study, we present the first cobalt(III)-catalyzed direct synthesis of isoquinolones from readily available primary arylamides and internal alkynes through a controlled oxidative C-H/N-H annulation reaction. This innovative protocol eliminates the need for expensive transition metal salts and external auxiliaries, producing the desired mono-annulated product exclusively while accommodating a wide range of substrates. Preliminary mechanistic studies highlight the critical role of copper oxide in facilitating the transformation. Additionally, peripheral modifications of the core isoquinolone rings have been performed to synthesize complex heterocyclic systems.
Collapse
Affiliation(s)
- Saksham Mishra
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| | - Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| |
Collapse
|
2
|
Jiang YQ, Qu P, Wang YH, Liu GQ. Photoinduced Intermolecular Hydroamination and Hydroetherification of Electron-Rich Alkenes With Low Catalyst Loadings. CHEMSUSCHEM 2024; 17:e202301511. [PMID: 39043608 DOI: 10.1002/cssc.202301511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
A photochemical method based on visible-light irradiation (blue LEDs/sunlight) has been developed for the intermolecular hydroamination and hydroetherification of electron-rich alkenes. This photochemical method is compatible with a wide range of azoles and electron-rich alkenes, such as vinyl ethers, vinyl sulfides and enamides, and is performed with low concentrations of photocatalyst (1000 ppm). Comprehensive mechanistic studies indicate that this process is initiated by the formation of an active radical cation intermediate through single electron oxidation of azole, which is mediated by excited Acr-Mes+ BF4 -.
Collapse
Affiliation(s)
- You-Qin Jiang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Pei Qu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Yong-Hao Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Gong-Qing Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| |
Collapse
|
3
|
Wu K, Ruan X, Li Q, Jiang Q, Ni S, Zhou Q. Phosphine-Catalyzed [3 + 4] Annulations of Salicylaldehyde Schiff Bases with α-Substituted Allenes: Construction of Functionalized Benzoxepine Fused Succinimide Derivatives. Org Lett 2024; 26:9425-9430. [PMID: 39475578 DOI: 10.1021/acs.orglett.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Herein we reported a novel strategy for constructing benzoxepine fused succinimide derivatives via a phosphine-catalyzed [3 + 4] cyclization of α-substituted allenes and salicylaldehyde Schiff bases. This methodology serves as a conduit for the construction of benzoxepine derivatives in good yields under mild conditions by an unprecedented mode involving the β'-carbon of allenes. Density functional theory calculations were conducted to study the possible mechanism. Moreover, this class of compounds exhibited the potential ability of cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Ke Wu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Quanxin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qihe Jiang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Jenkins T, Poole DL, Donohoe TJ. Oxidative Rearomatization of Tetrahydroisoquinolines Promoted by Pyridine- N-oxide. Org Lett 2024; 26:8377-8381. [PMID: 39312716 PMCID: PMC11459517 DOI: 10.1021/acs.orglett.4c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Isoquinolines are ubiquitous arenes found in many biologically useful molecules. While direct substitution at the heterocyclic ring is uncommon, reductive functionalization to form tetrahydroisoquinolines (THIQs) is straightforward. Herein, we describe a facile method for producing C4-functionalized isoquinolines from a readily available parent THIQ. This high-temperature transformation utilizes pyridine-N-oxide as an oxidant generating only volatile side products and is functional-group-tolerant.
Collapse
Affiliation(s)
- Timothy
C. Jenkins
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Darren L. Poole
- Molecular
Modalities Discovery, GSK Medicines Research
Centre, Stevenage SG1 2NY, United
Kingdom
| | - Timothy J. Donohoe
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
5
|
Ma J, Qi S, Yan G, Kirillov AM, Yang L, Fang R. DFT Study on the Mechanisms and Selectivities in Rh (III)-Catalyzed [5 + 1] Annulation of 2-Alkenylanilides and 2-Alkylphenols with Allenyl Acetates. J Org Chem 2024; 89:8562-8577. [PMID: 38847049 DOI: 10.1021/acs.joc.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The mechanisms and regio-, chemo-, and stereoselectivity were theoretically investigated in the Rh(III)-catalyzed [5 + 1] annulation of 2-alkenylanilides and 2-alkylphenols with allenyl acetates. Two different reactants, 2-alkenylanilides and 2-alkylphenols, were selected as model systems in the density functional theory calculations. The obtained theoretical results show that both these reactants exhibit similar steps, namely, (1) N-H/O-H deprotonation and C-H activation, (2) allenyl acetate migratory insertion, (3) β-oxygen elimination, (4) intramolecular nucleophilic addition of the nitrogen/oxygen-rhodium bond resulting in [5 + 1]-annulation, and (5) protonation with the formation of the desired product and regeneration of the Rh(III) catalyst. The theoretical evidence suggests that the selectivity is determined at the step of allenyl acetate's migratory insertion. Moreover, the regioselectivity is driven by electronic effects, while the interaction energies (C-H···π and C-H···O interactions) play a more imperative role in controlling the stereoselectivity. The obtained theoretical results not only well rationalize the experimental observations but also provide important mechanistic insights for related types of [5 + 1]-annulation reactions.
Collapse
Affiliation(s)
- Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
6
|
Wu Y, Liu Y, Kong Y, Wu M, Wang D, Shang Y, He X. Modular Assembly of Pyrrolo[3,4- c]isoquinolines through Rh-Catalyzed Cascade C-H Activation/Annulation of O-Methyl Aryloximes with Maleimides. J Org Chem 2024; 89:8447-8457. [PMID: 38832810 DOI: 10.1021/acs.joc.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
An efficient and practical strategy for the construction of pyrrolo[3,4-c]isoquinolines via Rh(III)-catalyzed cascade C-H activation and subsequential annulation process from easily available O-methyl aryloximes and maleimides has been disclosed. This facile protocol does not require any inert atmosphere protection with good efficiency in a low loading of catalyst and exhibits good functional group tolerance and broad substrate scope. Notably, the as-prepared products show potential photophysical properties.
Collapse
Affiliation(s)
- Yinsong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| |
Collapse
|
7
|
Thakur R, Paul K. Ruthenium(II)-Catalyzed Sequential C-H/N-H Alkene Annulation Cascade of Phenanthroimidazoles: Synthesis and Photophysical Studies. J Org Chem 2024; 89:6016-6026. [PMID: 38625682 DOI: 10.1021/acs.joc.3c02947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We report ruthenium(II)-catalyzed sequential C-H/N-H alkenylation cascade of phenanthroimidazole and alkenes to form novel phenanthroimidazoisoindol acrylates via dual C-H activation and aza-Michael reaction. The two nitrogen atoms of the imidazole ring act as directing groups for regioselective dual sequential ortho C-H activation. These polycyclic N-heterocycles were evaluated for their photophysical properties.
Collapse
Affiliation(s)
- Rekha Thakur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
8
|
Yaragorla S, Khan T, Raoof J. Cu-Catalyzed Oxidative C(sp 2)-H Cycloetherification of o-Alkenyl Arenols for the Preparation of Fused Furans. J Org Chem 2024; 89:34-43. [PMID: 38079266 DOI: 10.1021/acs.joc.3c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A practically efficient, copper-catalyzed approach for the synthesis of functionally embellished indeno-naphthofurans is developed from 1-(1H-inden-3-yl)naphthalen-2-ols. This intramolecular cycloetherification proceeds via C(sp2)-H oxygenation (C-H bond breaking and C-O bond forming), which enables the atom-economical synthesis of poly fused furans in high yields with large substrate diversity in the open air.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Tabassum Khan
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Jazeel Raoof
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
9
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
10
|
Arsenov MA, Stoletova NV, Smol'yakov AF, Savel'yeva TF, Maleev VI, Loginov DA, Larionov VA. A synthetic route to artificial chiral α-amino acids featuring a 3,4-dihydroisoquinolone core through a Rh(III)-catalyzed functionalization of allyl groups in chiral Ni(II) complexes. Org Biomol Chem 2023; 21:9143-9149. [PMID: 37982196 DOI: 10.1039/d3ob01513k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Currently, non-proteinogenic α-amino acids (α-AAs) have attracted increasing interest in bio- and medicinal chemistry. In this context, the first protocol for the asymmetric synthesis of artificial α-AAs featuring a 3,4-dihydroisoquinolone core with two stereogenic centers was successfully elaborated. A straightforward Rh(III)-catalysed C-H activation/annulation reaction of various aryl hydroxamates with a set of robust and readily available chiral Ni(II) complexes, which have allylic appendages derived from glycine (Gly), alanine (Ala) and phenylalanine (Phe), allowed incorporation of a 3,4-dihydroisoquinolone scaffold into the chiral amino acid residue. The reaction was performed in methanol and under mild conditions (at room temperature under air atmosphere), providing separable diastereomeric complexes with up to 94% total yield. The target α-AA with a 3,4-dihydroisoquinolone core in an enantiopure form was subsequently released from the obtained chiral Ni(II) complexes via an acidic decomposition in aqueous HCl, along with the recovery of the chiral auxiliary ligand.
Collapse
Affiliation(s)
- Mikhail A Arsenov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, bld. 1, 119334 Moscow, Russian Federation.
| | - Nadezhda V Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, bld. 1, 119334 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, bld. 1, 119334 Moscow, Russian Federation.
- Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russian Federation
| | - Tat'yana F Savel'yeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, bld. 1, 119334 Moscow, Russian Federation.
| | - Victor I Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, bld. 1, 119334 Moscow, Russian Federation.
| | - Dmitry A Loginov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, bld. 1, 119334 Moscow, Russian Federation.
- Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russian Federation
| | - Vladimir A Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, bld. 1, 119334 Moscow, Russian Federation.
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
11
|
Panigrahi P, Ghosh S, Khandelia T, Mandal R, Patel BK. Isoxazole as a nitrile synthon: en routes to the ortho-alkenylated isoxazole and benzonitrile with allyl sulfone catalyzed by Ru(II). Chem Commun (Camb) 2023; 59:10536-10539. [PMID: 37565340 DOI: 10.1039/d3cc02996d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A Ru(II) catalyzed regioselective Heck-type C-H olefination of isoxazole with unactivated allyl phenyl sulfone is revealed. The solvent DCM offers dual sp2-sp2 C-H activation via an N-directed strategy, leading to ortho-olefinated isoxazoles with exclusive E-selectivity. On the other hand, in DCE solvent, isoxazole serves as the nitrile synthon and leads to o-olefinated benzonitrile. At a higher temperature (110 °C) in DCE, after the ortho-olefination Ru(II) mediated cleavage of isoxazoles delivered the nitrile functionality.
Collapse
Affiliation(s)
- Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Ano Y, Takahashi S, Chatani N. Palladium-Catalyzed 1,1-Alkynyloxygenation of 2-Vinylbenzoates with Alkynyl Bromides. Org Lett 2023; 25:3266-3270. [PMID: 37133260 DOI: 10.1021/acs.orglett.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The palladium-catalyzed reaction of alkyl 2-vinylbenzoates with silyl-protected alkynyl bromides leads to the selective production of 3-alkynylated isochroman-1-ones. The use of an alkyl ester group as an effective oxygen nucleophile is crucial for the efficient 1,1-alkynyloxygenation of alkenes.
Collapse
Affiliation(s)
- Yusuke Ano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sakura Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Zhu M, Zhao Y, Li X, Liu B. Asymmetric [5+1] Annulation via C-H Activation/1,4-Rh Migration/Double Bond Shift Using a Transformable Pyridazine Directing Group. Org Lett 2023; 25:1839-1844. [PMID: 36912462 DOI: 10.1021/acs.orglett.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
N-Heterocycle-assisted C-H activation/annulation reactions have provided new concepts for the construction and transformation of azacycles. In this work, we disclose a [5+1] annulation reaction using a novel transformable pyridazine directing group (DG). The DG-transformable reaction mode led to the construction of a new heterocyclic ring accompanied by transformation of the original pyridazine directing group via a C-H activation/1,4-Rh migration/double bond shift pathway, affording the skeleton of pyridazino[6,1-b]quinazolines with a good substrate scope under mild conditions. Diverse fused cyclic compounds can be achieved by derivatization of the product. The asymmetric synthesis of the skeleton was also realized to afford the enantiomeric products with good stereoselectivity.
Collapse
Affiliation(s)
- Man Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuyao Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Wang Z, Zhao Y, Chen J, Chen M, Li X, Jiang T, Liu F, Yang X, Sun Y, Zhu Y. One-Pot Synthesis of Isoxazole-Fused Tricyclic Quinazoline Alkaloid Derivatives via Intramolecular Cycloaddition of Propargyl-Substituted Methyl Azaarenes under Metal-Free Conditions. Molecules 2023; 28:molecules28062787. [PMID: 36985760 PMCID: PMC10057414 DOI: 10.3390/molecules28062787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A practical method was developed for the convenient synthesis of isoxazole-fused tricyclic quinazoline alkaloids. This procedure accesses diverse isoxazole-fused tricyclic quinazoline alkaloids and their derivatives via intramolecular cycloaddition of methyl azaarenes with tert-butyl nitrite (TBN). In this method, TBN acts as the radical initiator and the source of N-O. Moreover, this protocol forms new C-N, C-C, and C-O bonds via sequence nitration and annulation in a one-pot process with broad substrate scope and functionalization of natural products.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuhan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Mengyao Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuehan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ting Jiang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fang Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xi Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yanping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
15
|
Yang J, Liu B, Chang J. Ru(II)-Catalyzed One-Pot Synthesis of 1,2-Hydropyridines via a Three-Component Reaction. Org Lett 2023; 25:1476-1480. [PMID: 36856311 DOI: 10.1021/acs.orglett.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A ruthenium(II)-catalyzed one-pot synthesis of highly substituted 1,2-dihydropyridines (DHPs) via a three-component reaction system has been realized. The reaction is conducted using a simple Ru(II) catalyst without the addition of specific ligands. The catalytic system exhibits good functionality tolerance with a wide range of starting materials. The DHPs obtained can be easily converted into tetrahydropyridines and azabicyclo[4.2.0]octa-4,7-dienes by subsequent reduction or [2 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Juntao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| |
Collapse
|
16
|
Shen J, Li L, Xu J, Shen C, Zhang P. Recent advances in the application of Langlois' reagent in olefin difunctionalization. Org Biomol Chem 2023; 21:2046-2058. [PMID: 36448510 DOI: 10.1039/d2ob01875f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this review, we summarise the recent applications of Langlois' reagent in the radical-mediated difunctionalization of alkenes. Among the various trifluoromethylation reagents, Langlois' reagent is an exceptional compound, and many important organic transformations have been realized by employing such reagents. Various organic transformations of Langlois' reagent, especially in radical chemistry, have been developed in recent years. This review describes several key activation methods for Langlois' reagent in the difunctionalization of alkenes by showcasing selected cornerstone research areas and related mechanisms to stimulate the interest of readers in promoting the wider development and application of Langlois' reagent.
Collapse
Affiliation(s)
- Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Chen W, Mao Y, Wang M, Ling F, Li C, Chen Z, Yao J. Rh(III)-catalyzed [4 + 1] cyclization of aryl substituted pyrazoles with cyclopropanols via C-H activation. Org Biomol Chem 2023; 21:775-782. [PMID: 36594518 DOI: 10.1039/d2ob02001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rhodium-catalyzed formal [4 + 1]-cyclization reaction of aryl substituted pyrazoles with cyclopropanols via C-H bond activation/cyclization processes to selectively construct a series of carbonyl functionalized pyrazolo[5,1-a]isoindoles is described. The reaction features good functional group compatibility and a broad substrate scope with respect to both cyclization components with up to 84% yields. Mechanistic studies indicated that the C-H cleavage might be the rate-determining step in this transformation.
Collapse
Affiliation(s)
- Wenxi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yan Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Min Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Changchang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China.
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
18
|
Fang T, Zhang S, Ye Q, Kong S, Yang T, Tang K, He X, Shang Y. Rh-Catalyzed Cascade C-H Activation/Annulation of N-Hydroxybenzamides and Propargylic Acetates for Modular Access to Isoquinolones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238553. [PMID: 36500644 PMCID: PMC9740102 DOI: 10.3390/molecules27238553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
A sequential Rh(III)-catalyzed C-H activation/annulation of N-hydroxybenzamides with propargylic acetates leading to the formation of NH-free isoquinolones is described. This reaction proceeds through a sequential C-H activation/alkyne insertion/intramolecular annulation/N-O bond cleavage procedure, affording a broad spectrum of products with diverse substituents in moderate-to-excellent yields. Notably, this protocol features the simultaneous formation of two new C-C/C-N bonds and one heterocycle in one pot with the release of water as the sole byproduct.
Collapse
Affiliation(s)
- Taibei Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Shiwen Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qingqing Ye
- Department of Medicine, Chuzhou City Vocation College, Chuzhou 239000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Shuwen Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Tingting Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Kaijie Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| |
Collapse
|
19
|
Zeng Z, Gao H, Zhou Z, Yi W. Intermolecular Redox-Neutral Carboamination of C–C Multiple Bonds Initiated by Transition-Metal-Catalyzed C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| |
Collapse
|
20
|
Gérardin B, Traboulsi I, Pal S, Lebunetelle G, Ramondenc Y, Hoarau C, Schneider C. Direct Synthesis of Benzo[ c]carbazoles by Pd-Catalyzed C–H [4 + 2] Annulation of 3-Arylindoles with External 1,3-Dienes. Org Lett 2022; 24:8164-8169. [DOI: 10.1021/acs.orglett.2c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Baptiste Gérardin
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Iman Traboulsi
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Suman Pal
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | | | - Yvan Ramondenc
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Christophe Hoarau
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| | - Cédric Schneider
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76 000 Rouen, France
| |
Collapse
|
21
|
Yang Z, Tang J, Chen Z, Wu XF. Ruthenium-Catalyzed Hydroxyl-Directed peri-Selective C-H Activation and Annulation of 1-Naphthols with CF 3-Imidoyl Sulfoxonium Ylides for the Synthesis of 2-(Trifluoromethyl)-2,3-dihydrobenzo[ de]chromen-2-amines. Org Lett 2022; 24:7288-7293. [PMID: 36194465 DOI: 10.1021/acs.orglett.2c02685] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A ruthenium-catalyzed peri-selective C-H activation and annulation of 1-naphthols with CF3-substituted imidoyl sulfoxonium ylides that uses hydroxyl as a weakly coordinating directing group is disclosed. The strategy provides a facile and practical route to diverse trifluoromethyl-containing 2,3-dihydrobenzo[de]chromen-2-amines with high efficiency. Notable advantages of this protocol include readily available materials, excellent regioselectivity, good functional group compatibility, and scalability.
Collapse
Affiliation(s)
- Zuguang Yang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jianhua Tang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
22
|
Recent Strategies in Nickel-Catalyzed C–H Bond Functionalization for Nitrogen-Containing Heterocycles. Catalysts 2022. [DOI: 10.3390/catal12101163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021.
Collapse
|
23
|
Zhu BH, Shen CH, Nie ML, Zheng F, Huang C, Chen F, Li L, Deng C, Ye LW, Qian PC. Highly Site-Selective Oxidative Cyclization of Ene-ynamides via Non-Noble-Metal Catalysis: Access to Functionalized Lactams. Org Lett 2022; 24:7009-7014. [PMID: 36121648 DOI: 10.1021/acs.orglett.2c02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, an unprecedented non-noble-metal-catalyzed oxidation/cyclization of ene-ynamides is developed, allowing the synthesis of diversely functionalized lactams in moderate to good yields with excellent diastereoselectivities without the observation of typical cyclopropanation products. In combination with Ellman's tert-butylsulfinimine chemistry, chiral γ-lactams containing three contiguous stereocenters are obtained with high diastereo- and enantioselectivity. Moreover, density functional theory (DFT) calculations indicate that this protocol probably undergoes a carbon cation or proton transfer process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Cang-Hai Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min-Ling Nie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fumin Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengzhe Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Long Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Chao Deng
- Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
24
|
Maurya RK, Sharma D, Kumari S, Chatterjee R, Khatravath M, Dandela R. Recent Advances in Transition Metal‐Catalyzed Domino‐Cyclization Strategies for Functionalized Heterocyclic/Carbocyclic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rohit Kumar Maurya
- Rohit Kumar Maurya Suruchi Kumari Mahender Khatravath Department of Chemistry, Central university of South SH-7, Panchanpur Road Karhara Fatehpur Gaya Bihar 824236 India
| | - Deepika Sharma
- Deepika Sharma Rambabu Dandela Rana Chatterjee Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus, Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013 India
| | - Suruchi Kumari
- Rohit Kumar Maurya Suruchi Kumari Mahender Khatravath Department of Chemistry, Central university of South SH-7, Panchanpur Road Karhara Fatehpur Gaya Bihar 824236 India
| | - Rana Chatterjee
- Deepika Sharma Rambabu Dandela Rana Chatterjee Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus, Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013 India
| | - Mahender Khatravath
- Rohit Kumar Maurya Suruchi Kumari Mahender Khatravath Department of Chemistry, Central university of South SH-7, Panchanpur Road Karhara Fatehpur Gaya Bihar 824236 India
| | - Rambabu Dandela
- Deepika Sharma Rambabu Dandela Rana Chatterjee Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus, Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013 India
| |
Collapse
|
25
|
Theoretical investigation on cobalt-catalyzed hydroacylation reaction: Mechanism and origin of stereoselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|