1
|
Zhao F, Han L, Liu T. Mechanistic insight into the ligand-controlled regioselective hydrocarboxylation of aryl olefins with palladium catalyst: a computational study. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
2
|
Kong S, Zhang M, Wang S, Wu H, Zou H, Huang G. Mechanism and Origins of Diastereo- and Regioselectivities of Palladium-Catalyzed Remote Diborylative Cyclization of Dienes via Chain-Walking Strategy. Chem Asian J 2023; 18:e202201057. [PMID: 36415038 DOI: 10.1002/asia.202201057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Density functional theory calculations have been performed to investigate the palladium-catalyzed remote diborylative cyclization of dienes. The computations reveal that the reaction proceeds through a rarely explored Pd(II)/Pd(IV) catalytic cycle, and the formal σ-bond metathesis between the alkylpalladium intermediate and B2 pin2 occurs via the pathway of the B-B oxidative addition/C-B reductive elimination involving the high-valent Pd(IV) species. The diastereoselectivity is determined by the migratory insertion into the Pd-C bond, which is mainly due to the combination of the torsional strain effect, steric repulsion and C-H-O hydrogen-bonding interaction. The steric hindrance around the reacting carbon group in the C-B reductive elimination turns out to be a key factor to provide the driving force of the chain walking of the Pd center to the terminal primary carbon position, enabling the experimentally observed remote regioselectivity.
Collapse
Affiliation(s)
- Shuqi Kong
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Mengyao Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyu Wang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongli Wu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Miller E, Mai BK, Read JA, Bell WC, Derrick JS, Liu P, Toste FD. A Combined DFT, Energy Decomposition, and Data Analysis Approach to Investigate the Relationship Between Noncovalent Interactions and Selectivity in a Flexible DABCOnium/Chiral Anion Catalyst System. ACS Catal 2022; 12:12369-12385. [PMID: 37215160 PMCID: PMC10195112 DOI: 10.1021/acscatal.2c03077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing strategies to study reactivity and selectivity in flexible catalyst systems has become an important topic of research. Herein, we report a combined experimental and computational study aimed at understanding the mechanistic role of an achiral DABCOnium cofactor in a regio- and enantiodivergent bromocyclization reaction. It was found that electron-deficient aryl substituents enable rigidified transition states via an anion-π interaction with the catalyst, which drives the selectivity of the reaction. In contrast, electron-rich aryl groups on the DABCOnium result in significantly more flexible transition states, where interactions between the catalyst and substrate are more important. An analysis of not only the lowest-energy transition state structures but also an ensemble of low-energy transition state conformers via energy decomposition analysis and machine learning was crucial to revealing the dominant noncovalent interactions responsible for observed changes in selectivity in this flexible system.
Collapse
Affiliation(s)
- Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jacquelyne A Read
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - William C Bell
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Abstract
The catalytic effect of ionization on the Diels-Alder reaction between 1,3-butadiene and acrylaldehyde has been studied using relativistic density functional theory (DFT). Removal of an electron from the dienophile, acrylaldehyde, significantly accelerates the Diels-Alder reaction and shifts the reaction mechanism from concerted asynchronous for the neutral Diels-Alder reaction to stepwise for the radical-cation Diels-Alder reaction. Our detailed activation strain and Kohn-Sham molecular orbital analyses reveal how ionization of the dienophile enhances the Diels-Alder reactivity via two mechanisms: (i) by amplifying the asymmetry in the dienophile's occupied π-orbitals to such an extent that the reaction goes from concerted asynchronous to stepwise and thus with substantially less steric (Pauli) repulsion per reaction step; (ii) by enhancing the stabilizing orbital interactions that result from the ability of the singly occupied molecular orbital of the radical-cation dienophile to engage in an additional three-electron bonding interaction with the highest occupied molecular orbital of the diene.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
5
|
Song Y, Zhang Y, Chen Z, Wu X. Recent Advances in Copper‐Catalyzed Carboxylation Reactions with CO
2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yufei Song
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Yu Zhang
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Zhengkai Chen
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 Liaoning P. R. China
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
6
|
Hu L, Gao H, Hu Y, Lv X, Wu Y, Lu G. Computational insights into strain-increase allylborations for alkylidenecyclopropanes. Chem Commun (Camb) 2022; 58:7034-7037. [DOI: 10.1039/d2cc02264h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origins of reactivity of strain-increase allylborations were computationally investigated. The low reactivity of vinylcyclopropyl boronates is due to weak electronic interactions between benzaldehyde and allylboronates. By increasing the acidity...
Collapse
|
7
|
Long J, Ding C, Yin G. Nickel/Brønsted acid dual-catalyzed regioselective C–H bond allylation of phenols with 1,3-dienes. Org Chem Front 2022. [DOI: 10.1039/d2qo00637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel/Brønsted acid dual-catalyzed C-H bond ortho-allylation of phenols with 1,3-dienes has been developed. This methodology is readily applicable to the modification of complex pharmaceutical molecules.
Collapse
Affiliation(s)
- Jiao Long
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chao Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|