1
|
Yang DS, Chen XL, Wu CY, Tang BC, Xiao YC, Wu YD, Wu AX. Synthesis of β,β-Dithioketones by Merging C-C and C-S Bond Cleavage in [1 + 1 + 1 + 1 + 1 + 1] Annulation. Org Lett 2024; 26:4340-4345. [PMID: 38743916 DOI: 10.1021/acs.orglett.4c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An unconventional [1 + 1 + 1 + 1 + 1 + 1] annulation process was developed for the construction of β,β-dithioketones by merging C-C and C-S bond cleavage. In this reaction, rongalite concurrently served as triple C1 units, dual sulfur(II) synthons, and a reductant for the first time. Mechanism investigation indicated that the reaction involved the self-mediated valence state change of rongalite. By performing this step-economical method, the challenging construction of C5-substituted 1,3-dithiane can be achieved under mild and simple conditions.
Collapse
Affiliation(s)
- Dong-Sheng Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiang-Long Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chun-Yan Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Bo-Cheng Tang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yong-Cheng Xiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Gomes LS, Costa ÉO, Duarte TG, Köhler MH, Rodrigues BM, Ferreira VF, da Silva FDC, Iglesias BA, Nascimento V. Synthesis and evaluation of photophysical, electrochemical, and ROS generation properties of new chalcogen-naphthoquinones-1,2,3-triazole hybrids. RSC Adv 2023; 13:34852-34865. [PMID: 38035251 PMCID: PMC10686195 DOI: 10.1039/d3ra06977j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
This study presents a comprehensive analysis encompassing the synthesis, structural elucidation, photophysical behavior, and electrochemical properties of a novel series of chalcogen-naphthoquinone-1,2,3-triazole hybrids. Employing a meticulously designed protocol, the synthesis of these hybrids, denoted as 11a-j, was achieved with remarkable efficiency (yielding up to 81%). This synthesis used a regioselective copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC). Furthermore, a detailed investigation into the photophysical characteristics, TDDFT calculations, electrochemical profiles, and photobiological attributes of compounds 11a-j was conducted. This exploration aimed to unravel insights into the excited state behaviors of these molecules, as well as their redox properties. Such insights are crucial for future applications of these derivatives in diverse biological assays.
Collapse
Affiliation(s)
- Luana S Gomes
- Department of Chemistry, SupraSelen Laboratory, Federal University Fluminense, Institute of Chemistry Campus do Valonguinho, Niterói 24020-141 RJ Brazil
| | - Érica O Costa
- Department of Chemistry, SupraSelen Laboratory, Federal University Fluminense, Institute of Chemistry Campus do Valonguinho, Niterói 24020-141 RJ Brazil
| | - Thuany G Duarte
- Department of Chemistry, SupraSelen Laboratory, Federal University Fluminense, Institute of Chemistry Campus do Valonguinho, Niterói 24020-141 RJ Brazil
| | - Mateus H Köhler
- Department of Physics, Federal University of Santa Maria Santa Maria 97105-900 RS Brazil
| | - Bruna M Rodrigues
- Department of Chemistry, Bioinorganic and Porphyrin Materials Laboratory, Federal University of Santa Maria Santa Maria 97105-900 RS Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Department of Pharmaceutical Technology Niterói 24241-000 RJ Brazil
| | - Fernando de C da Silva
- Laboratório de Síntese Orgânica Aplicada (LabSOA), Institute of Chemistry, Universidade Federal Fluminense Niterói 24020-141 RJ Brazil
| | - Bernardo A Iglesias
- Department of Chemistry, Bioinorganic and Porphyrin Materials Laboratory, Federal University of Santa Maria Santa Maria 97105-900 RS Brazil
| | - Vanessa Nascimento
- Department of Chemistry, SupraSelen Laboratory, Federal University Fluminense, Institute of Chemistry Campus do Valonguinho, Niterói 24020-141 RJ Brazil
| |
Collapse
|
3
|
Wang HY, Chen XL, Wu CY, Yang DS, Chen T, Wu AX. Reductive N-Formylation of Nitroarenes Mediated by Rongalite. Org Lett 2023; 25:7220-7224. [PMID: 37767992 DOI: 10.1021/acs.orglett.3c02839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Herein, we disclose a straightforward approach to access transition-metal-free reductive N-formylation of nitroarenes. This reaction integrates the dual role of rongalite, which acts as a reductant and a C1 building block concurrently. This provides an alternative method for the synthesis of N-aryl formamides from nitroarenes, including the construction of a C-N bond. The utility of this protocol was demonstrated by scale-up synthesis and late-stage functionalizations of complex molecules.
Collapse
Affiliation(s)
- Huai-Yu Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiang-Long Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chun-Yan Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Dong-Sheng Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ting Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
4
|
Gao H, Zhou L, Wan JP, Liu Y. Rongalite as C1 Synthon in the Synthesis of Divergent Pyridines and Quinolines. J Org Chem 2023. [PMID: 37171406 DOI: 10.1021/acs.joc.3c00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rongalite has been used as a cheap and efficient carbon synthon for the synthesis of divergent N-heteroaromatics, including different pyridines and quinolines. The selective synthesis of different products can be achieved by employing enaminones or enaminones/anilines as reaction partners. In addition, compared with the reaction using conventional aldehyde synthons, rongalite displays an evident advantage in providing products with considerably higher product yields under milder conditions. The GC-MS analysis of the reaction process has been performed to probe the possible reaction mechanism.
Collapse
Affiliation(s)
- Huan Gao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Liyun Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Chen XL, Wang HY, Wu CY, Tang BC, Hu YL, Ma JT, Zhuang SY, Yu ZC, Wu YD, Wu AX. Synthesis of Tetrahydro-2 H-thiopyran 1,1-Dioxides via [1+1+1+1+1+1] Annulation: An Unconventional Usage of a Tethered C-S Synthon. Org Lett 2022; 24:7659-7664. [PMID: 36214546 DOI: 10.1021/acs.orglett.2c03194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented [1+1+1+1+1+1] annulation process has been developed for the construction of tetrahydro-2H-thiopyran 1,1-dioxides. Notably, rongalite acted as a tethered C-S synthon in this reaction and can be chemoselectively used as triple C1 units and as a source of sulfone. Mechanistic investigation indicated that two different carbon-increasing models are involved in this reaction in which rongalite serves as C1 units.
Collapse
Affiliation(s)
- Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huai-Yu Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun-Yan Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bo-Cheng Tang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, SAR, China
| | - Yao-Luo Hu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|