1
|
Xing S, Zheng K, Shi L, Kang K, Peng Z, Zhang X, Liu B, Yang H, Yue G. Fluorescence Detection of Pb 2+ in Environmental Water Using Biomass Carbon Quantum Dots Modified with Acetamide-Glycolic Acid Deep Eutectic Solvent. Molecules 2024; 29:1662. [PMID: 38611941 PMCID: PMC11013460 DOI: 10.3390/molecules29071662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, a novel green fluorescent probe material, nitrogen-doped carbon quantum dots (N-CQDs), was prepared by a one-step hydrothermal synthesis method using walnut green skin as a carbon source and acetamide-glycolic acid deep eutectic solvent (AGADES) as a modifier. By covalent coupling, the amide chromophore in AGADES is designed to cover the surface of walnut green skin carbon quantum dots (W-CQDs), forming a fluorescence energy resonance effect and improving the fluorescence performance of the carbon quantum dots. The prepared N-CQDs have a uniform particle size distribution, and the fluorescence quantum efficiency has increased from 12.5% to 32.5%. Within the concentration range of 0.01~1000 μmol/L of Pb2+, the linear detection limit is 1.55 nmol/L, which can meet the trace detection of Pb2+ in the water environment, and the recycling rate reaches 97%. This method has been successfully applied to the fluorescence detection and reuse of Pb2+ in actual water bodies, providing new ideas and methods for the detection of heavy metal ions in environmental water.
Collapse
Affiliation(s)
- Shiwen Xing
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Keyang Zheng
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Lei Shi
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Kaiming Kang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Zhixiao Peng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
- School of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
- School of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Baoyou Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Huilong Yang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Gang Yue
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| |
Collapse
|
2
|
Khairunnisa-Atiqah MK, Salleh KM, Hair AHA, Mazlan NSN, Mostapha M, Zakaria S. Crosslinked carboxymethyl cellulose colloidal solution for cotton thread coating in wound dressing: A rheological study. Int J Biol Macromol 2023; 253:127518. [PMID: 37865379 DOI: 10.1016/j.ijbiomac.2023.127518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
Cotton thread therapeutic properties as a wound dressing can be enhanced by utilising carboxymethyl cellulose-nanoparticles (CMC/NPs) colloidal solution as a coating solution. Nanoparticles such as graphene oxide (GO), graphene quantum dots (GQD), and silver nanoparticles (AgNP) stability in CMC was investigated through the rheological analysis and UV-Vis spectroscopy of the colloidal solutions. Citric acid (CA) acted as a crosslinker and was utilised to crosslink the colloidal solution with cotton thread. These CMC/NPs coated threads were subjected to mechanical properties and antibacterial activity analysis. Results obtained indicate less nanoparticle agglomeration and were stable in the CMC-based nanofluid. CMC/NPs rheological study suggested that colloidal solutions exhibited shear thinning behaviour and behaved as non-Newtonian fluids with n < 1. Crosslinked CMC/NPs appeared in a gel-like state as the viscoelasticity of the solution increased. Among the colloidal solutions, CMC/AgNP showed the highest enhancement with a significant difference at p < 0.05 in terms of mechanical and antibacterial properties. Consequently, the rheological properties and stability of CMC/NPs might influence the coating solution's appearance and refine the cotton thread's microstructure for a functional wound dressing to be further utilised as a coating solution for antibacterial cotton thread wound dressing material.
Collapse
Affiliation(s)
- Mohamad Khalid Khairunnisa-Atiqah
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kushairi Mohd Salleh
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Ainul Hafiza Abd Hair
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia
| | - Nyak Syazwani Nyak Mazlan
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Marhaini Mostapha
- Centre for Health Economic Research, Institute for Health System Research, National Institute of Health Malaysia, Shah Alam 40170, Malaysia
| | - Sarani Zakaria
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
3
|
Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: A review. Adv Colloid Interface Sci 2023; 321:103020. [PMID: 37871382 DOI: 10.1016/j.cis.2023.103020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
Collapse
Affiliation(s)
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001., Australia
| |
Collapse
|
4
|
Gandla K, Kumar KP, Rajasulochana P, Charde MS, Rana R, Singh LP, Haque MA, Bakshi V, Siddiqui FA, Khan SL, Ganguly S. Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications. Gels 2023; 9:669. [PMID: 37623124 PMCID: PMC10453855 DOI: 10.3390/gels9080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hyderabad 500075, India
| | - K. Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Government of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - P. Rajasulochana
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kanchipuram 602105, India
| | - Manoj Shrawan Charde
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad 415124, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur 177033, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Rohtas 821305, India
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Vasudha Bakshi
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - S. Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
5
|
Zhao D, Li X, Xu M, Jiao Y, Liu H, Xiao X, Zhao H. Preparations of antibacterial yellow-green-fluorescent carbon dots and carbon dots-lysozyme complex and their applications in bacterial imaging and bacteria/biofilm inhibition/clearance. Int J Biol Macromol 2023; 231:123303. [PMID: 36657551 DOI: 10.1016/j.ijbiomac.2023.123303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The preparation of functional long-wavelength-emitting nanomaterials and the researches on their applications in antibacterial and antibiofilm fields have important significance. This paper reports the preparation of yellow-green-fluorescent and high- quantum yield carbon dots (4-ACDs) with 4-aminosalicylic acid and polyethylene imine as raw materials through one-step route, and the impacts of raw material structure and the reaction conditions upon the optical properties of the products have been investigated. 4-ACDs exhibit excellent broad-spectrum antibacterial activity, and their good biocompatibility ensures them as ideal fluorescent nano-probe for cell imaging. However, 4-ACDs could not effectively eliminate the biofilm of Staphylococcus aureus (S. aureus). CDs-LZM complex was prepared through the coupling between 4-ACDs and lysozyme (LZM) and the complex showed strong antibacterial activity against Gram-positive bacteria, particularly with MIC against S. aureus at 5 μg mL-1. Besides, CDs-LZM showed excellent ability against the biofilm of S. aureus. At the concentration of 60 μg mL-1, its inhibition rate against the growth of biofilm was 86 %, and elimination rate against biofilm reached 76 %. CDs-LZM exhibited obvious antibiofilm ability through removing extracellular matrix of biofilm, greatly reducing the thickness of biofilm under confocal microscopy. The application of novel long-wavelength-emitting nanomaterial in eliminating pathogenic bacteria is of great significance.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| | - Xiaoyun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Yan Jiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| |
Collapse
|
6
|
Light-Activated Modified Arginine Carbon Dots as Antibacterial Particles. Catalysts 2022. [DOI: 10.3390/catal12111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nitrogen-doped arginine carbon dots (Arg CDs) as light-sensitive antibacterial agents were prepared by using citric acid as the carbon source and arginine amino acid as the nitrogen source via a microwave-assisted synthesis method. Dynamic light scattering (DLS) measurements and TEM images revealed that the Arg CDs were in the 1–10 nm size range with a graphitic structure. To improve their antibacterial capability, the Arg CDs were modified with ethyleneimine (EDA), pentaethylenehexamine (PEHA), and polyethyleneimine (PEI) as different amine sources, and the zeta potential value of +2.8 ± 0.6 mV for Arg CDs was increased to +34.4 ± 4.1 mV for PEI-modified Arg CDs. The fluorescence intensity of the Arg CDs was significantly enhanced after the modification with EDA, and the highest antibacterial effect was observed for the PEI-modified Arg CDs. Furthermore, the photodynamic antibacterial capacity of bare and EDA-modified Arg CDs was determined upon light exposure to show their light-induced antibacterial effects. Photoexcited (315–400 nm, UVA, 300 W), EDA-modified Arg CDs at 5 mg/mL concentration were found to inhibit about 49 ± 7% of pathogenic bacteria, e.g., Escherichia coli, with 5 min of light exposure. Furthermore, the biocompatibilities of the bare and modified Arg CDs were also investigated with blood compatibility tests via hemolysis and blood clotting assays and cytotoxicity analysis on L929 fibroblast cells.
Collapse
|
7
|
Liang L, Shen X, Zhou M, Chen Y, Lu X, Zhang L, Wang W, Shen JW. Theoretical Evaluation of Potential Cytotoxicity of Graphene Quantum Dot to Adsorbed DNA. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7435. [PMID: 36363026 PMCID: PMC9654448 DOI: 10.3390/ma15217435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
As a zero-dimensional (0D) nanomaterial, graphene quantum dot (GQD) has a unique physical structure and electrochemical properties, which has been widely used in biomedical fields, such as bioimaging, biosensor, drug delivery, etc. Its biological safety and potential cytotoxicity to human and animal cells have become a growing concern in recent years. In particular, the potential DNA structure damage caused by GQD is of great importance but still obscure. In this study, molecular dynamics (MD) simulation was used to investigate the adsorption behavior and the structural changes of single-stranded (ssDNA) and double-stranded DNA (dsDNA) on the surfaces of GQDs with different sizes and oxidation. Our results showed that ssDNA can strongly adsorb and lay flat on the surface of GQDs and graphene oxide quantum dots (GOQDs), whereas dsDNA was preferentially oriented vertically on both surfaces. With the increase of GQDs size, more structural change of adsorbed ssDNA and dsDNA could be found, while the size effect of GOQD on the structure of ssDNA and dsDNA is not significant. These findings may help to improve the understanding of GQD biocompatibility and potential applications of GQD in the biomedical field.
Collapse
Affiliation(s)
- Lijun Liang
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xin Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengdi Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yijian Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xudong Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Li Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Wang
- Department of Pharmacy, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Road 38, Hangzhou 310009, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|