1
|
Wu Y, Wang Y, Sui G, Guo D, Chu D, Xu G, Li J, Li Y, Chai DF. Cobalt nanoparticles intercalation coupled with tellurium-doping MXene for efficient electrocatalytic water splitting. J Colloid Interface Sci 2024; 675:379-390. [PMID: 38972125 DOI: 10.1016/j.jcis.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Nowadays, the inherent re-stacking nature and weak d-p hybridization orbital interactions within MXene remains significant challenges in the field of electrocatalytic water splitting, leading to unsatisfactory electrocatalytic activity and cycling stability. Herein, this work aims to address these challenges and improve electrocatalytic performance by utilizing cobalt nanoparticles intercalation coupled with enhanced π-donation effect. Specifically, cobalt nanoparticles are integrated into V2C MXene nanosheets to mitigate the re-stacking issue. Meanwhile, a notable charge redistribution from cobalt to vanadium elevates orbital levels, reduces π*-antibonding orbital occupancy and alleviates Jahn-Teller distortion. Doping with tellurium induces localized electric field rearrangement resulting from the changes in electron cloud density. As a result, Co-V2C MXene-Te acquires desirable activity for hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 80.8 mV and 287.7 mV, respectively, at the current density of -10 mA cm-2 and 10 mA cm-2. The overall water splitting device achieves an impressive low cell voltage requirement of 1.51 V to obtain 10 mA cm-2. Overall, this work could offer a promising solution when facing the re-stacking issue and weak d-p hybridization orbital interactions of MXene, furnishing a high-performance electrocatalyst with favorable electrocatalytic activity and cycling stability.
Collapse
Affiliation(s)
- Yousen Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Dawei Chu
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Guang Xu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266101, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
2
|
Pandey S, Oh Y, Ghimire M, Son JW, Lee M, Jun Y. Value addition of MXenes as photo-/electrocatalysts in water splitting for sustainable hydrogen production. Chem Commun (Camb) 2024; 60:8789-8805. [PMID: 39081173 DOI: 10.1039/d4cc01811g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The energy transition from fossil fuel-based to renewable energy is a global agenda. At present, a major concern in the green hydrogen economy is the demand for clean fuels and non-noble materials to produce hydrogen through water splitting. Researchers are focusing on addressing this concern with the help of the development of appropriate non-noble-based photo-/electrocatalytic materials. A new class of two-dimensional materials, MXenes, have recently shown tremendous potential for water splitting to produce H2via a photoelectrochemical process. The unique properties of emerging 2D MXene materials, such as hydrophilic surface functionalities, higher surface-to-volume ratios, and inherent flexibility, present these materials as appropriate photo-/electrocatalytic materials. Unique value addition and innovative strategies such as the introduction of end-group modification, heterojunctions, and nanostructure engineering have shown the potential of MXene materials as emerging photo-/electrocatalysts for water splitting. When integrated with conventional noble metal catalysts, MXene-based catalysts demonstrated a lower overpotential for hydrogen and oxygen evolution reactions and a remarkable boost in performance for enhanced H2 production rates surpassing those of pristine noble metal-based catalysts. These promote future perspectives for the utilization of chemically synthesized MXenes as alternative photo-/electrocatalysts. Future research direction should focus on MXene synthesis and utilization for surface modification, composite formation, stabilization, and optimization in synthesis methods and post-synthesis treatments. This review highlights the progress in the understanding of fundamental mechanisms and issues associated with water splitting, influencing factors of MXenes, their value addition role, and application strategies for water splitting, including performance, challenges, and outlook of MXene-based photo-/electrocatalysts, in the last five years.
Collapse
Affiliation(s)
- Sudeshana Pandey
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yongsuk Oh
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Mukesh Ghimire
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ji-Won Son
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
- Energy Materials Research Center, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minoh Lee
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yongseok Jun
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
- Energy Materials Research Center, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Sajid IH, Iqbal MZ, Rizwan S. Recent advances in the role of MXene based hybrid architectures as electrocatalysts for water splitting. RSC Adv 2024; 14:6823-6847. [PMID: 38410361 PMCID: PMC10895475 DOI: 10.1039/d3ra06725d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
The development of non-noble metal based and cost-effective electrocatalysts for water splitting has attracted significant attention due to their potential in production of clean and green hydrogen fuel. Discovered in 2011, a family of two-dimensional transition metal carbides, nitrides, and carbonitrides, have demonstrated promising performance as electro catalysts in the water splitting process due to their high electrical conductivity, very large surface area and abundant catalytic active sites. However, their-long term stability and recyclability are limited due to restacking and agglomeration of MXene flakes. This problem can be solved by combining MXene with other materials to create their hybrid architectures which have demonstrated higher electrocatalytic performance than pristine MXenes. Electrolysis of water encompasses two half-cell reactions, hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode. Firstly, this concise review explains the mechanism of water splitting. Then it provides an overview of the recent advances about applications of MXenes and their hybrid architectures as HER, OER and bifunctional electrocatalysts for overall water splitting. Finally, the recent challenges and potential outlook in the field have been presented. This concise review may provide further understanding about the role of MXene-based hybrid architectures to develop efficient electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Imran Haider Sajid
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 51 886 5599
| | - Muhammad Z Iqbal
- Department of Chemical and Petroleum Engineering, United Arab Emirates University P.O. Box 15551 Al-Ain United Arab Emirates
| | - Syed Rizwan
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 51 886 5599
| |
Collapse
|
4
|
Parayil RT, Gupta SK, Pal M, Dutta A, Tyagi D, Sudarshan K, Mohapatra M. ZnGa 2-xAl xO 4 ( x = 0 ≤ 2) spinel for persistent light emission and HER/OER bi-functional catalysis. RSC Adv 2023; 13:31101-31111. [PMID: 37881761 PMCID: PMC10594079 DOI: 10.1039/d3ra05017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Spinel materials have demonstrated diverse applications in various fields, especially in the energy sector. Since the pure spinel structure has the limitations of poor inherent activity and low conductivity, defect engineering through octahedral B-site modulation is expected to enhance various properties. Here in this work, we have synthesized ZnGa2-xAlxO4 (x = 0 ≤ 2) spinel and moved from one terminal (ZnGa2O4) to the other (ZnAl2O4) by varying the Ga/Al ratio using solvent-free solid-state reaction. Dopant and rare earth element-free (RE) ZnGa2O4 spinel showed excellent blue luminescence with photoluminescent quantum yields (PLQY) of 13% while exhibiting persistent light emission close to 60 min. The Al3+ incorporation at Ga3+ site doesn't yield any improvement in persistent luminescence lifetime owing to quenching of shallow traps as suggested by thermoluminescence (TL) studies. Moreover our materials have demonstrated bifunctional electrocatalytic activity towards both oxygen evolution (OER) and hydrogen evolution reaction (HER) which has never been reported for ZnGa2-xAlxO4. X-ray photoelectron spectroscopy (XPS) and positron annihilation lifetime spectroscopy (PALS) suggested that mixed Al/Ga-containing spinels possessed enhanced oxygen vacancies/defects. This makes them better electrocatalyst towards OER and HER compare to ZnGa2O4 and ZnAl2O4. The ZnGa1.75Al0.25O4 composition by virtue of enhanced oxygen vacancies and less charge transfer resistance (47.3 ohms) demonstrated best electrocatalytic activity for OER compared to the other synthesized catalysts at the same applied potential (1.6 V). On the other hand, the ZnGa1Al1O4 composition demonstrated excellent faradaic efficiency of ∼ 90% towards HER. From this work we can achieve multifunctional applications towards optoelectronics and electrocatalysis just by modulating Al/Ga ratio in ZnGa2-xAlxO4.
Collapse
Affiliation(s)
- Reshmi Thekke Parayil
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Santosh K Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Manodip Pal
- Chemistry Department, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Deepak Tyagi
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Kathi Sudarshan
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Manoj Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| |
Collapse
|
5
|
Zhou Y, Wu Y, Guo D, Li J, Li Y, Yang X, Fu S, Sui G, Chai DF. Novel Strain Engineering Combined with a Microscopic Pore Synergistic Modulated Strategy for Designing Lattice Tensile-Strained Porous V 2C-MXene for High-Performance Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15797-15809. [PMID: 36930051 DOI: 10.1021/acsami.2c19729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition metal carbon/nitride (MXene) holds immense potential as an innovative electrocatalyst for enhancing the overall water splitting properties. Nevertheless, the re-stacking nature induced by van der Waals force remains a significant challenge. In this work, the lattice tensile-strained porous V2C-MXene (named as TS(24)-P(50)-V2C) is successfully constructed via the rapid spray freezing method and the following hydrothermal treatment. Besides, the influence of lattice strain degree and microscopic pores on the catalytic ability is reviewed and explored systematically. The lattice tensile strain within V2C-MXene could widen the interlayer spacing and accelerate the ion transfer. The microscopic pores could change the ion transmission path and shorten the migration distance. As a consequence, the obtained TS(24)-P(50)-V2C shows extraordinary hydrogen evolution reaction and oxygen evolution reaction activity with the overpotential of 154 and 269 mV, respectively, at the current density of 10 mA/cm2, which is quite remarkable compared to the MXene-based electrocatalysts. Moreover, the overall water splitting device assembled using TS(24)-P(50)-V2C as both anode and cathode demonstrates a low cell voltage requirement of 1.57 V to obtain 10 mA/cm2. Overall, the implementation of this work could offer an exciting avenue to overcome the re-stacking issue of V2C-MXene, affording a high-efficiency electrocatalyst with superior catalytic activity and desirable reaction kinetics.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yousen Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266101, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
6
|
Electrocatalytic hydrogen and oxygen evolution reactions: Role of two-dimensional layered materials and their composites. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
7
|
Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Saji VS. Nanotubes-nanosheets (1D/2D) heterostructured bifunctional electrocatalysts for overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zahra SA, Hakim MW, Mansoor MA, Rizwan S. Two-dimensional double transition metal carbides as superior bifunctional electrocatalysts for overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Babar ZUD, Della Ventura B, Velotta R, Iannotti V. Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Adv 2022; 12:19590-19610. [PMID: 35865615 PMCID: PMC9258029 DOI: 10.1039/d2ra02985e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional materials have unique properties and their better functionality has created new paradigms in the field of sensing. Over the past decade, a new family of 2D materials known as MXenes has emerged as a promising material for numerous applications, including biosensing. Their metallic conductivity, rich surface chemistry, hydrophilicity, good biocompatibility, and high anchoring capacity for biomaterials make them an attractive candidate to detect a variety of analytes. Despite such notable properties, there are certain limitations associated with them. This review aims to present a detailed survey of MXene's synthesis; in particular, their superiority in the field of biosensing as compared to other 2D materials is addressed. Their low oxidative stability is still an open challenge, and recent investigations on MXene's oxidation are summarized. The hexagonal stacking network of MXenes acts as a distinctive matrix to load nanoparticles, and the embedded nanoparticles can bind an excess number of biomolecules (e.g., antibodies) thereby improving biosensor performance. We will also discuss the synthesis and corresponding performance of MXenes nanocomposites with noble metal nanoparticles and magnetic nanoparticles. Furthermore, Nb and Ti2C-based MXenes, and Ti3C2-MXene sandwich immunoassays are also reviewed in view of their importance. Different aspects and challenges associated with MXenes (from their synthesis to final applications) and the future perspectives described give new directions to fabricate novel biosensors.
Collapse
Affiliation(s)
- Zaheer Ud Din Babar
- Scuola Superiore Meridionale (SSM), University of Naples Federico II Largo S. Marcellino, 10 80138 Italy
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Raffaele Velotta
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Vincenzo Iannotti
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
- CNR-SPIN (Institute for Superconductors, Oxides and Other Innovative Materials and Devices) Piazzale V. Tecchio 80 80125 Naples Italy
| |
Collapse
|