1
|
Liu X, Sun Y, Gao Y, Zhang X, Li X, Zheng W, Liu M, Zhao T, Yuan XA, Yue M, Liu Z. Anticancer behavior of cyclometallated iridium(III)-tributyltin(IV) carboxylate schiff base complexes with aggregation-induced emission. J Inorg Biochem 2024; 262:112767. [PMID: 39486100 DOI: 10.1016/j.jinorgbio.2024.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Cyclometallated iridium(III) and organotin(IV) carboxylate complexes have shown potential application value in the field of anticancer. However, the widespread aggregation-caused quenching (ACQ) effect of these complexes is not conducive to the exploration of their targeting and anticancer mechanism, and the idea of aggregation-induced emission (AIE) effect can effectively solve this problem. Then, AIE-activated cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes were designed and prepared in this study. Complexes exhibited AIE effect in highly concentrated solution or aggregative state, which facilitated the investigation of subcellular tissue targeting (mitochondria) and cell morphology. Compared with cyclometallated iridium(III) complex and tributyltin(IV) carboxylate monomers, these complexes showed the better in-vitro anti-proliferative activity toward A549 cells, confirming the favorable synergistic anticancer activity. Even for A549/DDP (cisplatin-resistance) cells, these complexes also exhibited the better activity. In addition, complexes showed a mitochondrial apoptotic pathway. Therefore, cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes can be used as the potential substitutes for platinum-based drugs and gain further application.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuan Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenya Zheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ting Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
2
|
Sun Y, Liu J, Li Q, Zhang X, Cao Z, Bu L, Cao S, Liu X, Yuan XA, Liu Z. Studies of Anticancer Activities In Vitro and In Vivo for Butyltin(IV)-Iridium(III) Imidazole-Phenanthroline Complexes with Aggregation-Induced Emission Properties. Inorg Chem 2024; 63:14641-14655. [PMID: 39053139 DOI: 10.1021/acs.inorgchem.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Organotin(IV) and iridium(III) complexes have shown good application potential in the field of anticancer; however, the aggregation-caused quenching (ACQ) effect induced by high concentration or dose has limited the research on their targeting and anticancer mechanism. Then, a series of aggregation-induced emission (AIE)-activated butyltin(IV)-iridium(III) imidazole-phenanthroline complexes were prepared in this study. Complexes exhibited significant fluorescence improvement in the aggregated state because of the restricted intramolecular rotation (RIR), accompanied by an absolute fluorescence quantum yield of up to 29.2% (IrSn9). Complexes demonstrated potential in vitro antiproliferative and antimigration activity against A549 cells, following a lysosomal-mitochondrial apoptotic pathway. Nude mouse models further confirmed that complexes had favorable in vivo antitumor and antimigration activity in comparison to cisplatin. Therefore, butyltin(IV)-iridium(III) imidazole-phenanthroline complexes possess the potential as potential substitutes for platinum-based drugs.
Collapse
Affiliation(s)
- Yiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qinyu Li
- Experimental Teaching and Equipment Management Center, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ziwei Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Luoyi Bu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuying Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
3
|
Babu LT, Das U, Das R, Kar B, Paira P. Re(I)[2-aryl-1 H-imidazo[4,5- f][1,10]phenanthroline] tricarbonyl chloride complexes for selective cancer therapy via a potential DNA damage mechanism. Dalton Trans 2024; 53:5993-6005. [PMID: 38469684 DOI: 10.1039/d3dt04383e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, achieving selective cancer therapy with trifling side effects has been a great challenge in the eradication of cancer. Thus, to amplify the cytoselective approach of complexes, herein, we developed a series of Re(I)[2-aryl-1H-imidazo[4,5-f][1,10]phenanthroline] tricarbonyl chloride complexes and screened their potency against HeLa and MCF-7 cell lines together with the evaluation of their toxicity towards a normal kidney cell line (HEK-293). On meticulous investigation, complex [ReI(CO)3Cl(K2-N,N-(2c))] (3c) was found to be the most potent anticancer entity among other complexes. Complex 3c also showed competency to induce apoptosis in MCF-7 cells through G2/M phase cell-cycle arrest in association with the generation of ample reactive oxygen species (ROS), eventually leading to DNA intercalation and internucleosomal cleavage. The order of the cytotoxicity of these complexes depended on their lipophilic character and the electron-withdrawing halogen substitution at the para-position of the phenyl ring in the imidazophenanthroline ligand.
Collapse
Affiliation(s)
- Lavanya Thilak Babu
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Utpal Das
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Rishav Das
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Binoy Kar
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Thilak
Babu L, Paira P. CuAAC "Click"-Derived Luminescent 2-(2-(4-(4-(Pyridin-2-yl)-1 H-1,2,3-triazol-1-yl)butoxy)phenyl)benzo[ d]thiazole-Based Ru(II)/Ir(III)/Re(I) Complexes as Anticancer Agents. ACS OMEGA 2023; 8:32382-32395. [PMID: 37720792 PMCID: PMC10500652 DOI: 10.1021/acsomega.3c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/13/2023] [Indexed: 09/19/2023]
Abstract
To enhance the cytoselective behavior of the complexes, we intended to develop a CuAAC "click"-derived synthetic protocol for the preparation of 2-(2-(4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)butoxy)phenyl)benzo[d]thiazole-based Ru(II)/Ir(III)/Re(I) complexes, and their cytotoxicity against three different cancer cell lines (MCF-7, HeLa, and U87MG) in consort with one normal cell line (HEK-293) was evaluated. In our detailed investigations, the significant cytotoxic nature of the Ru(II) complex 7a compared to Ir(III) and Re(I) complexes (7b and 7c, respectively) was observed. Complex 7a was capable of MCF-7 cell apoptosis via the inhibition of both S- and G2/M-phase cell cycle arrest in association with a substantial quantity of ROS production and DNA intercalation.
Collapse
Affiliation(s)
- Lavanya Thilak
Babu
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Roy N, Shanavas S, Kar B, Thilak Babu L, Das U, Vardhan S, Sahoo SK, Bose B, Rajagopalan V, Paira P. G2/M-Phase-Inhibitory Mitochondrial-Depolarizing Re(I)/Ru(II)/Ir(III)-2,2'-Bipyrimidine-Based Heterobimetallic Luminescent Complexes: An Assessment of In Vitro Antiproliferative Activity and Bioimaging for Targeted Therapy toward Human TNBC Cells. ACS OMEGA 2023; 8:12283-12297. [PMID: 37033791 PMCID: PMC10077533 DOI: 10.1021/acsomega.2c08285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
Triple-negative breast cancer (TNBC) is an extremely vicious subtype of human breast cancer having the worst prognosis along with strong invasive and metastatic competency. Hence, it can easily invade into blood vessels, and presently, no targeted therapeutic approach is available to annihilate this type of cancer. Metal complexes have successfully stepped into the anticancer research and are now being applauded due to their anticancer potency after the discovery of cisplatin. Many of these metal complexes are also well recognized for their activity toward breast cancer. As the TNBC is a very dangerous subtype and has long been a challenging ailment to treat, we have intended to develop a few brand new mixed metallic Ru(II)/Ir(III)/Re(I)-2,2'-bipyrimidine complexes [L'Re2], [L'RuRe], and [L'IrRe] to abate the unbridled proliferation of TNBC cells. The potency of the complexes against TNBC cells has been justified using MDA-MB-468 TNBC cell lines where complex [L'IrRe] has displayed significant potency among all the three complexes with an IC50 value of 24.12 μM. The complex [L'IrRe] has been competent to cause apoptosis of TNBC cells through inhibition of the G2/M phase in the cell cycle in association with a profuse amount of ROS generation and mitochondrial depolarization.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Shanooja Shanavas
- Department
Stem Cells and Regenerative Medicine Centre, Institution Yenepoya
Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Binoy Kar
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Lavanya Thilak Babu
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Utpal Das
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Seshu Vardhan
- Department
of Applied Chemistry, S.V. National Institute
of Technology (SVNIT), Ichchanath, Surat, Gujarat 395007, India
| | - Suban K. Sahoo
- Department
of Applied Chemistry, S.V. National Institute
of Technology (SVNIT), Ichchanath, Surat, Gujarat 395007, India
| | - Bipasha Bose
- Department
Stem Cells and Regenerative Medicine Centre, Institution Yenepoya
Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Vijayaraghavan Rajagopalan
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Priyankar Paira
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| |
Collapse
|
6
|
Wang L, Liu X, Wu Y, He X, Guo X, Gao W, Tan L, Yuan XA, Liu J, Liu Z. In Vitro and In Vivo Antitumor Assay of Mitochondrially Targeted Fluorescent Half-Sandwich Iridium(III) Pyridine Complexes. Inorg Chem 2023; 62:3395-3408. [PMID: 36763897 DOI: 10.1021/acs.inorgchem.2c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Half-sandwich iridium(III) complexes show potential value in the anticancer field. However, complexes with favorable luminescence performance are rare, which limits further investigation of the anticancer mechanism. In this paper, 10 triphenylamine-modified fluorescent half-sandwich iridium(III) pyridine complexes {[(η5-Cpx)Ir(L)Cl2]} (Ir1-Ir10) were prepared and showed potential antiproliferative activity, effectively inhibiting the migration of A549 cells. Ir6, showing the best activity among these complexes, exhibited excellent fluorescence performance (absolute fluorescence quantum yield of 15.17%) in solution. Laser confocal detection showed that Ir6 followed an energy-dependent cellular uptake mechanism, specifically accumulating in mitochondria (Pearson co-localization coefficient of 0.95). A Western blot assay further confirmed the existence of a mitochondrial apoptotic channel. Additionally, Ir6 could arrest the cell cycle at the G2/M phase, catalyze NADH oxidation, reduce the mitochondrial membrane potential, induce an increase in the level of intracellular reactive oxygen species, and exhibit a mechanism of oxidation. An in vivo antitumor assay confirmed that Ir6 can effectively inhibit tumor growth and is safer than cisplatin.
Collapse
Affiliation(s)
- Liyan Wang
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xian He
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaohui Guo
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenshan Gao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lin Tan
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
7
|
Liu J, Wu Y, Yang G, Liu Z, Liu X. Mitochondrial targeting half-sandwich iridium(III) and ruthenium(II) dppf complexes and in vitro anticancer assay. J Inorg Biochem 2023; 239:112069. [PMID: 36423395 DOI: 10.1016/j.jinorgbio.2022.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Considering the potential application of half-sandwich and ferrocenyl-containing organometallic complexes in the area of anticancer, four half-sandwich iridium(III) (IrIII) and ruthenium(II) (RuII) diphenylphosphino ferrocene (dppf) complexes were prepared in this study. Complexes showed favorable anti-proliferation activity towards A549 cell lines compared to cisplatin, meanwhile, which could effectively inhibit cell migration. These complexes followed an energy dependence uptake mechanism, effectively accumulated in mitochondria with a Pearson's Colocalization Coefficient (PCC) of 0.77, decreased the mitochondrial membrane potential, induced a surge of reactive oxygen species, disturbed cell cycle, and eventually led to apoptosis. Western blot assay further confirmed that these complexes induced apoptosis following a mitochondrial pathway. Above all, half-sandwich IrIII and RuII dppf complexes show the prospect of becoming a new multifunctional therapeutic platform for mitochondrial targeted imaging and anticancer drugs.
Collapse
Affiliation(s)
- Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xicheng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|