1
|
Hassan AMA, Abubshait SA, Abdel-Haleem DR, El-Naggar AM, Hassaballah AI. Eco-sustainable Synthesis and Potential Efficiency of Some Novel N-containing Heterocyclic Derivatives as Insecticidal and Photosensitizing Agents Against Musca domestica L. Chem Biodivers 2024:e202401650. [PMID: 39231387 DOI: 10.1002/cbdv.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
The rising application of conventional synthetic insecticides develops resistant populations of houseflies; therefore, using new chemical agents with different modes of action is essential to overcome this problem. The mechanical grinding technique was used as a green method, to synthesize the tested compounds because it is a more facile work-up and high-yield economy, simplicity and solvent-free than conventional thermal technique. Various methods were employed to synthesize new heterocycles containing anthracene (a photosensitizing agent) from chalcone 3, a building block material such as the preparation of the pyrazole derivatives 4-7, isoxazole derivative 8, pyrimidines 9-11, and oxirane derivative 12. The novel synthesized compounds were analyzed by FT-IR, 1H-NMR, 13C-NMR spectra, and elemental analysis. Herein, the toxicity of the anthracene derivatives was assessed against Musca domestica larvae and adults in different conditions to demonstrate the effect of various inserted moieties on the efficiency of tested compounds. Furthermore, the influence of sunlight on the toxicity of anthracene was studied in dark and sunlight tests against adult houseflies. Moreover, these compounds diminished the total protein and lipids contents while significantly influencing the antioxidant enzymes activities of M. domestica adults. Structure-activity relationships demonstrated the role of each moiety on the toxicity of compounds.
Collapse
Affiliation(s)
- A M A Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Samar A Abubshait
- Department of Chemistry, Collage of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 32441, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 32441, Dammam, Saudi Arabia
| | - Doaa R Abdel-Haleem
- Entomology Department, Faculty of Science, Ain Shams University, 11566, Cairo, Abbassia, Egypt
| | - Abeer M El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
2
|
Abd El-Mawgoud HK, AboulMagd AM, Nemr MTM, Hemdan MM, Hassaballah AI, Farag PS. Design, synthesis and cytotoxic evaluation of new thieno[2,3-d]pyrimidine analogues as VEGFR-2/AKT dual inhibitors, apoptosis and autophagy inducers. Bioorg Chem 2024; 150:107622. [PMID: 38996545 DOI: 10.1016/j.bioorg.2024.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Novel thieno[2,3-d]pyrimidine analogues were designed, synthesized and evaluated for anti-proliferative activity against HepG-2, PC-3 and MCF-7 cancer cell lines. In addition, WI-38 normal cell line was used to explore the safety of all the tested compounds. Compounds 2 (IC50 = 4.29 µM HePG-2, 10.84 µM MCF-7), 6 (IC50 = 14.86 μM HePG-2, 8.04 μM PC-3 and 12.90 μM MCF-7) and 17 (IC50 = 9.98 μM HePG-2, 33.66 μM PC-3 and 14.62 μM MCF-7) were the most promising candidates on the tested cancer cells with high selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where compound 2 inhibited VEGFR-2 and AKT at IC50 = 0.161 and 1.06 μM, respectively, Furthermore, derivative 6 inhibited VEGFR-2 and AKT at IC50 = 0.487 and 0.364 μM, respectively, while compound 17 showed IC50 = 0.164 and 0.452 μM, respectively. Moreover, compounds 2, 6 resulted in G1 phase cell cycle arrest while candidate 17 arrest cell cycle at G2/M phase. Similar to the apoptosis results, compound 17 showed the highest autophagic induction among the evaluated derivatives. Finally, docking studies were conducted to assess the binding patterns of these active derivatives. The results showed that the binding patterns inside the active sites of both the VEGFR-2 and AKT-1 (allosteric pocket) crystal structures were identical to the reference ligands.
Collapse
Affiliation(s)
- Heba K Abd El-Mawgoud
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, 11767 Cairo, Egypt.
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt.
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street 11562, Cairo, Egypt
| | - Magdy M Hemdan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| | - Aya I Hassaballah
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| | - Paula S Farag
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| |
Collapse
|
3
|
Hassaballah AI, AboulMagd AM, Hemdan MM, Hekal MH, El-Sayed AA, Farag PS. New pyrazolo[3,4- d]pyrimidine derivatives as EGFR-TK inhibitors: design, green synthesis, potential anti-proliferative activity and P-glycoprotein inhibition. RSC Adv 2024; 14:1995-2015. [PMID: 38196910 PMCID: PMC10774712 DOI: 10.1039/d3ra05401b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
In this study, four series of new pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesized with both green and conventional methods. All the synthesized candidates were chemically confirmed using spectroscopic methods, and the DFT of the reaction mechanism was illustrated. The anti-proliferative activity of the synthesized compounds was evaluated against NCI 60 cancer cell lines. Two compounds (15 & 16) exhibited excellent broad-spectrum cytotoxic activity in NCI 5-log dose assays against the full 60-cell panel with GI50 values ranging from 0.018 to 9.98 μM. Moreover, the enzymatic assessment of the most active derivatives 4, 15, and 16 against EGFR tyrosine kinase showed significant inhibitory activities with IC50 of 0.054, 0.135, and 0.034 μM, respectively. The quantitative real-time PCR for the P-glycoprotein effect of compounds 15 and 16 was examined and illustrated the ability to inhibit the P-glycoprotein by 0.301 and 0.449 fold in comparison to the control. Mechanistic study using reversal activity in MDA-MB-468 cell line revealed the effect of both compounds 15 and 16 cytotoxicity against DOX/MDA-MB-468 with IC50 = 0.267 and 0.844 μM, respectively. Additionally, compound 16 was found to induce cell cycle arrest at the S phase with a subsequent increase in pre-G cell population in MDA-MB-468 cell line. It also increased the percentage of apoptotic cells in a time-dependent manner. Moreover, a molecular docking study was carried out to explain the target compounds' potent inhibitory activity within the EGFR binding site.
Collapse
Affiliation(s)
- Aya I Hassaballah
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB) Beni-Suef Egypt
| | - Magdy M Hemdan
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Mohamed H Hekal
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Amira A El-Sayed
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Paula S Farag
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| |
Collapse
|
4
|
Abbass EM, Al-Karmalawy AA, Sharaky M, Khattab M, Alzahrani AYA, Hassaballah AI. Rational design and eco-friendly one-pot multicomponent synthesis of novel ethylidenehydrazineylthiazol-4(5H)-ones as potential apoptotic inducers targeting wild and mutant EGFR-TK in triple negative breast cancer. Bioorg Chem 2024; 142:106936. [PMID: 37890211 DOI: 10.1016/j.bioorg.2023.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
A novel series of ethylidenehydrazineylthiazol-4(5H)-ones were synthesized using various eco-friendly one-pot multicomponent synthetic techniques. The anticancer activity of compounds (4a-m) was tested against 11 cancer cell lines. While the IC50 of all compounds was evaluated against the most sensitive cell lines (MDA-MB-468 and FaDu). Our SAR study pinpointed that compound 4a, having a phenyl substituent, exhibited a significant growth inhibition % against all cancer cell lines. The frontier anticancer candidates against the MDA-MB-468 were also examined against the wild EGFR (EGFR-WT) and mutant EGFR (EGFR-T790M) receptors. Most of the synthesized compounds exhibited a higher inhibitory potential against EGFR-T790M than the wild type of EGFR. Remarkably, compound 4k exhibited the highest inhibitory activity against both EGFR-WT and EGFR-T790M with IC50 values (0.051 and 0.021 µM), respectively. The pro-apoptotic protein markers (p53, BAX, caspase 3, caspase 6, caspase 8, and caspase 9) and the anti-apoptotic key marker (BCL-2) were also measured to propose a mechanism of action for the compound 4k as an apoptotic inducer for MDA-MB-468. Investigation of the cell cycle arrest potential of compound 4k was also conducted on MDA-MB-468 cancer cells. We also evaluated the inhibitory activities of compounds (4a-m) against both EGFR-WT and EGFR-T790M using two different molecular docking processes.
Collapse
Affiliation(s)
- Eslam M Abbass
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassiya 11566, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Office of Research, University of Western Australia, Perth, Australia; Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | | | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassiya 11566, Cairo, Egypt
| |
Collapse
|
5
|
Kumar P, Bhalla A. Isothiocyanates ( in situ) and sulfonyl chlorides in water for N-functionalization of bicyclic amidines: access to N-alkylated γ-/ω-lactam derivatized thiourea and sulfonamides. Org Biomol Chem 2023; 21:8868-8874. [PMID: 37888837 DOI: 10.1039/d3ob01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, we showcase the potential of isothiocyanates generated in situ and aryl sulfonyl chlorides as electrophiles in water for N-functionalization of bicyclic amidines (DBN and DBU). This strategy provides complementary access to a range of thiouredosulfides, sulfonamides, aroylthioureas and amides derivativatized with distal γ- and ω-lactams. A novel sulfonyl chloride mediated formation of β-uredo sulfides has been achieved from β-isothiocyanato sulfides, removing the requirement for the harsh synthesis of unstable isocyanates. Mechanistic studies suggest a radical mechanism for the difunctionalization of alkenes, the efficacy of H2O in the ring opening of bicyclic amidines, and an oxygen source along with sulfonyl chloride as desulfurization agents for thiourea to afford urea derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, UT, India.
| | - Aman Bhalla
- Department of Chemistry and Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, UT, India.
| |
Collapse
|
6
|
Hekal MH, Farag PS, Hemdan MM, El-Sayed AA, Hassaballah AI, El-Sayed WM. New 1,3,4-thiadiazoles as potential anticancer agents: pro-apoptotic, cell cycle arrest, molecular modelling, and ADMET profile. RSC Adv 2023; 13:15810-15825. [PMID: 37250214 PMCID: PMC10209631 DOI: 10.1039/d3ra02716c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
A series of novel 1,3,4-thiadiazoles was synthesized via the reaction of N-(5-(2-cyanoacetamido)-1,3,4-thiadiazol-2-yl)benzamide (3) with different carbon electrophiles and evaluated as potential anticancer agents. The chemical structures of these derivatives were fully elucidated using various spectral and elemental analyses. Out of 24 new thiadiazoles, derivatives 4, 6b, 7a, 7d, and 19 have significant antiproliferative activity. However, derivatives 4, 7a, and 7d were toxic to the normal fibroblasts, and therefore were excluded from further investigations. Derivatives 6b and 19 with IC50 at less than 10 μM and with high selectivity were selected for further studies in breast cells (MCF-7). Derivative 19 arrested the breast cells at G2/M probably through inhibition of CDK1, while 6b significantly increased the sub-G1 percent of cells probably through induction of necrosis. These results were confirmed by the annexin V-PI assay where 6b did not induce apoptosis and increased the necrotic cells to 12.5%, and compound 19 significantly increased the early apoptosis to 15% and increased the necrotic cells to 15%. Molecular docking showed that compound 19 was like FB8, an inhibitor of CDK1, in binding the CDK1 pocket. Therefore, compound 19 could be a potential CDK1 inhibitor. Derivatives 6b and 19 did not violate Lipinski's rule of five. In silico studies showed that these derivatives have a low blood-brain barrier penetration capability and high intestinal absorption. Taken together, derivatives 6b and 19 could serve as potential anticancer agents and merit further investigations.
Collapse
Affiliation(s)
- Mohamed H Hekal
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Paula S Farag
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Magdy M Hemdan
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Amira A El-Sayed
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt +202 2684 2123 +202 2482 1633
| |
Collapse
|
7
|
Farag PS, AboulMagd AM, Hemdan MM, Hassaballah AI. Annulated pyrazole derivatives as a novel class of urokinase (uPA) inhibitors: Green synthesis, anticancer activity, DNA-damage evaluation, and molecular modelling study. Bioorg Chem 2022; 130:106231. [DOI: 10.1016/j.bioorg.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022]
|