1
|
Ballauff M. Driving Forces in the Formation of Biocondensates of Highly Charged Proteins: A Thermodynamic Analysis of the Binary Complex Formation. Biomolecules 2024; 14:1421. [PMID: 39595597 PMCID: PMC11592313 DOI: 10.3390/biom14111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
A thermodynamic analysis of the binary complex formation of the highly positively charged linker histone H1 and the highly negatively charged chaperone prothymosin α (ProTα) is detailed. ProTα and H1 have large opposite net charges (-44 and +53, respectively) and form complexes at physiological salt concentrations with high affinities. The data obtained for the binary complex formation are analyzed by a thermodynamic model that is based on counterion condensation modulated by hydration effects. The analysis demonstrates that the release of the counterions mainly bound to ProTα is the main driving force, and effects related to water release play no role within the limits of error. A strongly negative Δcp (=-0.87 kJ/(K mol)) is found, which is due to the loss of conformational degrees of freedom.
Collapse
Affiliation(s)
- Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Forschungsbau SupraFab, Altensteinstrasse 23a, 14195 Berlin, Germany
| |
Collapse
|
2
|
Wycisk V, Behnke JS, Nielinger L, Seewald M, Weisner J, Binsch M, Wagner MC, Raisch T, Urner LH. Synthesis of Asymmetric Ionic Hybrid Detergents enables Micelles with Scalable Properties including Cell Compatibility. Chemistry 2024:e202401833. [PMID: 38819585 DOI: 10.1002/chem.202401833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Ionic detergents enable applications and cause harm in biospheres due to cell toxicity. The utility of covalent combinations between ionic and non-ionic detergent headgroups in modulating cell toxicity remains speculative due to the yet rarely explored synthesis. We close this gap and establish the modular synthesis of ionic/non-ionic hybrid detergents. We restructure a combinatorial methallyl dichloride one-pot coupling into a two-step coupling, which reduces by-products, improves product yields, and enables the gram-scale preparation of asymmetric, cationic/non-ionic and anionic/non-ionic hybrid detergents. Our modular synthesis delivers new modalities for the design of ionic detergents, including an unprecedented scaling of properties that determine applications, such as charge, critical micelle concentration, solubilizing properties, hard water tolerance, and cell compatibility. We uncover that shielding the charge in ionic headgroups can switch the detergent species that is toxic to cells from monomers to mixtures of monomers and micellar assemblies. Establishing the chemistry of ionic/non-ionic hybrid detergents provides a missing evolutionary link in the structural comparison of ionic and non-ionic detergents, enables an easy synthesis access to yet unexplored chemical spaces of asymmetric hybrid materials, and delivers new modalities for designing the toxicity of supramolecular nanomaterials.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Jan-Simon Behnke
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Lena Nielinger
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Marc Seewald
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Jörn Weisner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Markus Binsch
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| | - Tobias Raisch
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Str. 11, 44227, Dortmund
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund
| |
Collapse
|
3
|
Duan W, Qiu H, Htwe KK, Wang Z, Liu Y, Wei S, Xia Q, Sun Q, Han Z, Liu S. Correlation between Water Characteristics and Gel Strength in the Gel Formation of Golden Pompano Surimi Induced by Dense Phase Carbon Dioxide. Foods 2023; 12:1090. [PMID: 36900608 PMCID: PMC10000427 DOI: 10.3390/foods12051090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The relationship between the gel quality of golden pompano surimi treated with dense phase carbon dioxide (DPCD) and changes in water characteristics was evaluated. Low-field nuclear magnetic resonance (LF-NMR) and nuclear magnetic resonance imaging were used to monitor changes in the water status of surimi gel under different treatment conditions. Whiteness, water-holding capacity and gel strength were used as the quality indicators of the surimi gel. The results showed that DPCD treatment could significantly increase the whiteness of surimi and the strength of the gel, while the water-holding capacity decreased significantly. LF-NMR analysis showed that, as the DPCD treatment intensity increased, the relaxation component T22 shifted to the right, T23 shifted to the left, the proportion of A22 decreased significantly (p < 0.05) and the proportion of A23 increased significantly (p < 0.05). A correlation analysis of water characteristics and gel strength showed that the water-holding capacity of surimi induced by DPCD was strongly positively correlated with gel strength, while A22 and T23 were strongly negatively correlated with gel strength. This study provides helpful insights into the quality control of DPCD in surimi processing and also provides an approach for the quality evaluation and detection of surimi products.
Collapse
Affiliation(s)
- Weiwen Duan
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hui Qiu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kyi Kyi Htwe
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zefu Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiuyu Xia
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qinxiu Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zongyuan Han
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Marine Science and Engineering (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center for Key Technology of Marine Food Deep Processing, Dalian University of Technology, Dalian 116034, China
| |
Collapse
|
4
|
Malicka W, Haag R, Ballauff M. Interaction of Heparin with Proteins: Hydration Effects. J Phys Chem B 2022; 126:6250-6260. [PMID: 35960645 DOI: 10.1021/acs.jpcb.2c04928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a thermodynamic investigation of the interaction of heparin with lysozyme in the presence of potassium glutamate (KGlu). The binding constant Kb is measured by isothermal titration calorimetry (ITC) in a temperature range from 288 to 310 K for concentrations of KGlu between 25 and 175 mM. The free energy of binding ΔGb derived from Kb is strongly decreasing with increasing concentration of KGlu, whereas the dependence of ΔGb on temperature T is found to be small. The decrease of ΔGb can be explained in terms of counterion release: Binding of lysozyme to the strong polyelectrolyte heparin liberates approximately three of the condensed counterions of heparin, thus increasing the entropy of the system. The dependence of ΔGb on T, on the other hand, is traced back to a change of hydration of the protein and the polyelectrolyte upon complex formation. This dependence is quantitatively described by the parameter Δw that depends on T and vanishes at a characteristic temperature T0. A comparison of the complex formation in the presence of KGlu with the one in the presence of NaCl demonstrates that the parameters related to hydration are changed considerably. The characteristic temperature T0 in the presence of KGlu solutions is considerably smaller than that in the presence of NaCl solutions. The change of specific heat Δcp is found to become more negative with increasing salt concentration: This finding agrees with the model-free analysis by the generalized van't Hoff equation. The entire analysis reveals a small but important change of the free energy of binding by hydration. It shows that these ion-specific Hofmeister effects can be modeled quantitatively in terms of a characteristic temperature T0 and a parameter describing the dependence of Δcp on salt concentration.
Collapse
Affiliation(s)
- Weronika Malicka
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|