1
|
Fan XY, Yu Y, Yao Y, Li WD, Tao FY, Wang N. Applications of Ene-Reductases in the Synthesis of Flavors and Fragrances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18305-18320. [PMID: 38966982 PMCID: PMC11342376 DOI: 10.1021/acs.jafc.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Flavors and fragrances (F&F) are interesting organic compounds in chemistry. These compounds are widely used in the food, cosmetic, and medical industries. Enzymatic synthesis exhibits several advantages over natural extraction and chemical preparation, including a high yield, stable quality, mildness, and environmental friendliness. To date, many oxidoreductases and hydrolases have been used to biosynthesize F&F. Ene-reductases (ERs) are a class of biocatalysts that can catalyze the asymmetric reduction of α,β-unsaturated compounds and offer superior specificity and selectivity; therefore, ERs have been increasingly considered an ideal alternative to their chemical counterparts. This review summarizes the research progress on the use of ERs in F&F synthesis over the past 20 years, including the achievements of various scholars, the differences and similarities among the findings, and the discussions of future research trends related to ERs. We hope this review can inspire researchers to promote the development of biotechnology in the F&F industry.
Collapse
Affiliation(s)
- Xin-Yue Fan
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yuan Yu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yao Yao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Wen-Dian Li
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Fei-Yan Tao
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Na Wang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| |
Collapse
|
2
|
Wu S, Ma X, Yan H. Identification and characterization of an ene-reductase from Corynebacterium casei. Int J Biol Macromol 2024; 264:130427. [PMID: 38428763 DOI: 10.1016/j.ijbiomac.2024.130427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The asymmetric reduction of α, β-unsaturated compounds conjugated with electron-withdrawing group by ene-reductases (ERs) is a valuable method for the synthesis of enantiopure chiral compounds. This study introduced an ER from Corynebacterium casei (CcER) which was heterologously expressed in Escherichia coli BL21(DE3), and the purified recombinant CcER was characterized for its biocatalytic properties. CcER exhibited the highest specific activity at 40 °C and pH 6.5, and showcased appreciable stability below 40 °C over a pH range of 6.0-7.0. The enzyme displayed high resistance to methanol. CcER accepted NADH or NADPH as a cofactor and exhibited a broad substrate spectrum towards α, β-unsaturated compounds. It achieved complete conversion of 2-cyclohexen-1-one and good performance for stereoselective reduction of (R)-carvone (conversion 98 %, diastereoselectivity 96 %). This study highlights the robustness and potential of CcER.
Collapse
Affiliation(s)
- Shijin Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaojing Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hongde Yan
- College of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo, China.
| |
Collapse
|
3
|
Feng J, Xue Y, Wang J, Xie X, Lu C, Chen H, Lu Y, Zhu L, Chu D, Chen X. Enhancing the asymmetric reduction activity of ene-reductases for the synthesis of a brivaracetam precursor. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|