1
|
Yilmaz Goler AM, Tarbin Jannuzzi A, Biswas A, Mondal S, Basavanakatti VN, Jayaprakash Venkatesan R, Yıldırım H, Yıldız M, Çelik Onar H, Bayrak N, Jayaprakash V, TuYuN AF. Analysis of Quinolinequinone Analogs with Promising Cytotoxic Activity against Breast Cancer. Chem Biodivers 2023; 20:e202300848. [PMID: 37590495 DOI: 10.1002/cbdv.202300848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones (AQQ1-5) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones (AQQ2-5) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3, in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ (AAQ2) have been studied.
Collapse
Affiliation(s)
- Ayse Mine Yilmaz Goler
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854, İstanbul, Türkiye
| | - Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstanbul University, 34116, İstanbul, Türkiye
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, Jharkhand, India
| | - Subodh Mondal
- Bioanalysis, Eurofins Advinus BioPharma Services India Pvt Ltd., 560058, Bengaluru, India
| | | | - Raghusrinivasan Jayaprakash Venkatesan
- Department of Industrial and Systems Engineering, Faculty of Interdisciplinary Sciences & Engineering, Indian Institute of Technology, 721302, Kharagpur, India
| | - Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, İstanbul, Türkiye
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye
| | - Hülya Çelik Onar
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, İstanbul, Türkiye
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, 34126, İstanbul, Türkiye
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, Jharkhand, India
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, 34126, İstanbul, Türkiye
| |
Collapse
|
2
|
Hamdy AK, Sakamoto T, Toma T, Sakamoto M, Abourehab MAS, Otsuka M, Fujita M, Tateishi H, Radwan MO. New Insights into the Structural Requirements of Isatin-Derived Pro-Apoptotic Agents against Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2022; 15:ph15121579. [PMID: 36559030 PMCID: PMC9784816 DOI: 10.3390/ph15121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Searching for bioactive compounds within the huge chemical space is like trying to find a needle in a haystack. Isatin is a unique natural compound which is endowed with different bio-pertinent activities, especially in cancer therapy. Herein, we envisaged that adopting a hybrid strategy of isatin and α,β-unsaturated ketone would afford new chemical entities with strong chemotherapeutic potential. Of interest, compounds 5b and 5g demonstrated significant antiproliferative activities against different cancer genotypes according to NCI-60 screening. Concomitantly, their IC50 against HL-60 cells were 0.38 ± 0.08 and 0.57 ± 0.05 µM, respectively, demonstrating remarkable apoptosis and moderate cell cycle arrest at G1 phase. Intriguingly, an impressive safety profile for 5b was reflected by a 37.2 times selectivity against HL-60 over PBMC from a healthy donor. This provoked us to further explore their mechanism of action by in vitro and in silico tools. Conclusively, 5b and 5g stand out as strong chemotherapeutic agents that hold clinical promise against acute myeloid leukemia.
Collapse
Affiliation(s)
- Ahmed K. Hamdy
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Takashi Sakamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masaharu Sakamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Drug Discovery, Science Farm, Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza 12622, Egypt
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| |
Collapse
|
4
|
Yıldırım H, Bayrak N, Yıldız M, Mataracı-Kara E, Korkmaz S, Shilkar D, Jayaprakash V, TuYuN AF. Aminated Quinolinequinones as Privileged Scaffolds for Antibacterial Agents: Synthesis, In Vitro Evaluation, and Putative Mode of Action. ACS OMEGA 2022; 7:41915-41928. [PMID: 36440112 PMCID: PMC9685608 DOI: 10.1021/acsomega.2c03193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Our previous studies have revealed that the aminated 1,4-quinone scaffold can be used for the development of novel antibacterial and/or antifungal agents. In this study, the aminated quinolinequinones (AQQ1-9) were designed, synthesized, and evaluated for their antimicrobial activity against a panel of seven bacterial strains (three Gram-positive and four Gram-negative bacteria) and three fungal strains. The structure-activity relationship (SAR) for the QQs was also summarized. The antibacterial activity results indicated that the two aminated QQs (AQQ6 and AQQ9) were active against Enterococcus faecalis (ATCC 29212) with a MIC value of 78.12 μg/mL. Besides, the two aminated QQs (AQQ8 and AQQ9) were active against Staphylococcus aureus (ATCC 29213) with MIC values of 4.88 and 2.44 μg/mL, respectively. The most potent aminated QQs (AQQ8 and AQQ9) were identified as promising lead molecules to further explore their mode of action. The selected QQs (AQQ8 and AQQ9) were further evaluated in vitro to assess their potential antimicrobial activity against each of 20 clinically obtained methicillin-resistant S. aureus isolates, antibiofilm activity, and bactericidal activity using time-kill curve assay. We found that the molecules prevented adhesion of over 50% of the cells in the biofilm. Molecular docking studies were performed to predict the predominant binding mode(s) of the ligands. We believe that the molecules need further investigation, especially against infections involving biofilm-forming microbes.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department
of Chemistry, Engineering Faculty, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Nilüfer Bayrak
- Department
of Chemistry, Engineering Faculty, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Mahmut Yıldız
- Department
of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Emel Mataracı-Kara
- Department
of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116 Istanbul, Turkey
| | - Serol Korkmaz
- Institute
of Health Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Deepak Shilkar
- Department
of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department
of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
| | - Amaç Fatih TuYuN
- Department
of Chemistry, Faculty of Science, Istanbul
University, Fatih, 34126 Istanbul, Turkey
| |
Collapse
|