1
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
2
|
Yuan L, Li M, Li J, Zhu TF, Dong M, Liu L. Aggregation-induced signal amplification strategy based on peptide self-assembly for ultrasensitive electrochemical detection of melanoma biomarker. Anal Chim Acta 2024; 1289:342214. [PMID: 38245208 DOI: 10.1016/j.aca.2024.342214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
The detection of melanoma circulating biomarker in liquid biopsies is current under evaluation for being potentially utilized for earlier cancer diagnosis and its metastasis. Herein, we developed a non-invasive electrochemical approach for ultrasensitive detection of the S100B, serving as a potential promising blood circulating biomarker of melanoma, based on an aggregation-induced signal amplification (AISA) strategy via in-situ peptide self-assembly. The fundamental principle of this assay is that the designed amphiphilic peptides (C16-Pep-Fc), fulfilling multiple functions, feature both a recognition region for specific binding to S100B and an aggregation (self-assembly) region for the formation of peptide nanomicelles under mild conditions. The C16 tails were encapsulated within the hydrophobic core of the aggregates, while the relatively hydrophilic recognition fragment Pep and Fc tag were exposed on the outer surface for subsequent recognition of S100B and signal output. AISA provided remarkable accumulation of electroactive Fc moieties that enabled ultrasensitive S100B detection of as low as 0.02 nM, which was 10-fold lower than un-amplified approach and better than previously reported assays. As a proof-of-concept study, further experiments also highlighted the good reproducibility and stability of AISA and demonstrated its usability when applied to simulated serum samples. Hence, this work not only presented a valuable assay tool for ultrasensitive detecting protein biomarker, but also advocated for the utilization of aggregation-induced signal amplification in electrochemical biosensing system, given its considerable potential for future practical applications.
Collapse
Affiliation(s)
- Liang Yuan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mengfei Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiaying Li
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, PR China
| | - Tao-Feng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, PR China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
3
|
Sousa LR, Guinati BGS, Maciel LIL, Baldo TA, Duarte LC, Takeuchi RM, Faria RC, Vaz BG, Paixão TRLC, Coltro WKT. Office paper and laser printing: a versatile and affordable approach for fabricating paper-based analytical devices with multimodal detection capabilities. LAB ON A CHIP 2024; 24:467-479. [PMID: 38126917 DOI: 10.1039/d3lc00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Multiple protocols have been reported to fabricate paper-based analytical devices (PADs). However, some of these techniques must be revised because of the instrumentation required. This paper describes a versatile and globally affordable method to fabricate PADs using office paper as a substrate and a laser printing technique to define hydrophobic barriers on paper surfaces. To demonstrate the feasibility of the alternatives proposed in this study, the fabrication of devices for three types of detection commonly associated with using PADs was demonstrated: colorimetric detection, electrochemical detection, and mass spectrometry associated with a paper-spray ionization (PSI-MS) technique. Besides that, an evaluation of the type of paper used and chemical modifications required on the substrate surface are also presented in this report. Overall, the developed protocol was suitable for using office paper as a substrate, and the laser printing technique as an efficient fabrication method when using this substrate is accessible at a resource-limited point-of-need. Target analytes were used as a proof of concept for these detection techniques. Colorimetric detection was carried out for acetaminophen, iron, nitrate, and nitrite with limits of detection of 0.04 μg, 4.5 mg mL-1, 2.7 μmol L-1, and 6.8 μmol L-1, respectively. A limit of detection of 0.048 fg mL-1 was obtained for the electrochemical analysis of prostate-specific antigen. Colorimetric and electrochemical devices revealed satisfactory performance when office paper with a grammage of 90 g m-2 was employed. Methyldopa analysis was also carried out using PSI-MS, which showed a good response in the same paper weight and behavior compared to chromatographic paper.
Collapse
Affiliation(s)
- Lucas R Sousa
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Barbara G S Guinati
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Lanaia I L Maciel
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Thaisa A Baldo
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Regina M Takeuchi
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, MG, Brazil
| | - Ronaldo C Faria
- Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Thiago R L C Paixão
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| |
Collapse
|
4
|
Sun B, Wang Z, Zhao B, Jin Y, Li Y, Yang S. Preparation of biotin-labeled graphene film for detecting nerve growth factor. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|